Cargando…
Local Spectral Statistics of Gaussian Matrices with Correlated Entries
We prove optimal local law, bulk universality and non-trivial decay for the off-diagonal elements of the resolvent for a class of translation invariant Gaussian random matrix ensembles with correlated entries.
Autores principales: | Ajanki, Oskari H., Erdős, László, Krüger, Torben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926669/ https://www.ncbi.nlm.nih.gov/pubmed/27418707 http://dx.doi.org/10.1007/s10955-016-1479-y |
Ejemplares similares
-
Cusp Universality for Random Matrices I: Local Law and the Complex Hermitian Case
por: Erdős, László, et al.
Publicado: (2020) -
On the Spectral Form Factor for Random Matrices
por: Cipolloni, Giorgio, et al.
Publicado: (2023) -
Paraxial Ocular Measurements and Entries in Spectral and Modal Matrices: Analogy and Application
por: Abelman, Herven, et al.
Publicado: (2014) -
Edge universality for non-Hermitian random matrices
por: Cipolloni, Giorgio, et al.
Publicado: (2020) -
Beam intensity and spectral coherence of Hermite-cosine-Gaussian rectangular multi-Gaussian correlated Schell-model beam in oceanic turbulence
por: Wu, Xu, et al.
Publicado: (2023)