Cargando…
Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes: An association analysis of polymorphisms and bone in young and elderly women
INTRODUCTION: The gastro-intestinal hormone glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-induced insulin secretion, with bone anabolic effects through GIP receptor (GIPR) in animal models. We explore its potential in humans by analyzing association between polymorphisms (SN...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926814/ https://www.ncbi.nlm.nih.gov/pubmed/28326339 http://dx.doi.org/10.1016/j.bonr.2015.12.001 |
_version_ | 1782440188650192896 |
---|---|
author | Garg, Gaurav McGuigan, Fiona E. Kumar, Jitender Luthman, Holger Lyssenko, Valeriya Akesson, Kristina |
author_facet | Garg, Gaurav McGuigan, Fiona E. Kumar, Jitender Luthman, Holger Lyssenko, Valeriya Akesson, Kristina |
author_sort | Garg, Gaurav |
collection | PubMed |
description | INTRODUCTION: The gastro-intestinal hormone glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-induced insulin secretion, with bone anabolic effects through GIP receptor (GIPR) in animal models. We explore its potential in humans by analyzing association between polymorphisms (SNPs) in the GIP and GIPR genes with bone phenotypes in young and elderly women. METHODS: Association between GIP (rs2291725) and GIPR (rs10423928) and BMD, bone mineral content (BMC), bone microarchitecture, fracture and body composition was analyzed in the OPRA (75y, n = 1044) and PEAK-25 (25y; n = 1061) cohorts and serum-GIP in OPRA. RESULTS: The GIP receptor AA-genotype was associated with lower ultrasound values in young women (BUA p = 0.011; SI p = 0.030), with no association to bone phenotypes in the elderly. In the elderly, the GIP was associated with lower ultrasound (GG vs. AA; SOS p(adj) = 0.021) and lower femoral neck BMD and BMC after adjusting for fat mass (p(adj) = 0.016 and p(adj) = 0.03). In young women, neither GIPR nor GIP associated with other bone phenotypes including spine trabecular bone score. In the elderly, neither SNP associated with fracture. GIP was associated with body composition only in Peak-25; GIPR was not associated with body composition in either cohort. Serum-GIP levels (in elderly) were not associated with bone phenotypes, however lower levels were associated with the GIPR A-allele (β = − 6.93; p(adj) = 0.03). CONCLUSIONS: This first exploratory association study between polymorphisms in GIP and GIPR in relation to bone phenotypes and serum-GIP in women at different ages indicates a possible, albeit complex link between glucose metabolism genes and bone, while recognizing that further studies are warranted. |
format | Online Article Text |
id | pubmed-4926814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-49268142017-03-21 Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes: An association analysis of polymorphisms and bone in young and elderly women Garg, Gaurav McGuigan, Fiona E. Kumar, Jitender Luthman, Holger Lyssenko, Valeriya Akesson, Kristina Bone Rep Article INTRODUCTION: The gastro-intestinal hormone glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-induced insulin secretion, with bone anabolic effects through GIP receptor (GIPR) in animal models. We explore its potential in humans by analyzing association between polymorphisms (SNPs) in the GIP and GIPR genes with bone phenotypes in young and elderly women. METHODS: Association between GIP (rs2291725) and GIPR (rs10423928) and BMD, bone mineral content (BMC), bone microarchitecture, fracture and body composition was analyzed in the OPRA (75y, n = 1044) and PEAK-25 (25y; n = 1061) cohorts and serum-GIP in OPRA. RESULTS: The GIP receptor AA-genotype was associated with lower ultrasound values in young women (BUA p = 0.011; SI p = 0.030), with no association to bone phenotypes in the elderly. In the elderly, the GIP was associated with lower ultrasound (GG vs. AA; SOS p(adj) = 0.021) and lower femoral neck BMD and BMC after adjusting for fat mass (p(adj) = 0.016 and p(adj) = 0.03). In young women, neither GIPR nor GIP associated with other bone phenotypes including spine trabecular bone score. In the elderly, neither SNP associated with fracture. GIP was associated with body composition only in Peak-25; GIPR was not associated with body composition in either cohort. Serum-GIP levels (in elderly) were not associated with bone phenotypes, however lower levels were associated with the GIPR A-allele (β = − 6.93; p(adj) = 0.03). CONCLUSIONS: This first exploratory association study between polymorphisms in GIP and GIPR in relation to bone phenotypes and serum-GIP in women at different ages indicates a possible, albeit complex link between glucose metabolism genes and bone, while recognizing that further studies are warranted. Elsevier 2015-12-17 /pmc/articles/PMC4926814/ /pubmed/28326339 http://dx.doi.org/10.1016/j.bonr.2015.12.001 Text en © 2015 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Garg, Gaurav McGuigan, Fiona E. Kumar, Jitender Luthman, Holger Lyssenko, Valeriya Akesson, Kristina Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes: An association analysis of polymorphisms and bone in young and elderly women |
title | Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes: An association analysis of polymorphisms and bone in young and elderly women |
title_full | Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes: An association analysis of polymorphisms and bone in young and elderly women |
title_fullStr | Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes: An association analysis of polymorphisms and bone in young and elderly women |
title_full_unstemmed | Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes: An association analysis of polymorphisms and bone in young and elderly women |
title_short | Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes: An association analysis of polymorphisms and bone in young and elderly women |
title_sort | glucose-dependent insulinotropic polypeptide (gip) and gip receptor (gipr) genes: an association analysis of polymorphisms and bone in young and elderly women |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926814/ https://www.ncbi.nlm.nih.gov/pubmed/28326339 http://dx.doi.org/10.1016/j.bonr.2015.12.001 |
work_keys_str_mv | AT garggaurav glucosedependentinsulinotropicpolypeptidegipandgipreceptorgiprgenesanassociationanalysisofpolymorphismsandboneinyoungandelderlywomen AT mcguiganfionae glucosedependentinsulinotropicpolypeptidegipandgipreceptorgiprgenesanassociationanalysisofpolymorphismsandboneinyoungandelderlywomen AT kumarjitender glucosedependentinsulinotropicpolypeptidegipandgipreceptorgiprgenesanassociationanalysisofpolymorphismsandboneinyoungandelderlywomen AT luthmanholger glucosedependentinsulinotropicpolypeptidegipandgipreceptorgiprgenesanassociationanalysisofpolymorphismsandboneinyoungandelderlywomen AT lyssenkovaleriya glucosedependentinsulinotropicpolypeptidegipandgipreceptorgiprgenesanassociationanalysisofpolymorphismsandboneinyoungandelderlywomen AT akessonkristina glucosedependentinsulinotropicpolypeptidegipandgipreceptorgiprgenesanassociationanalysisofpolymorphismsandboneinyoungandelderlywomen |