Cargando…

(13)C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils(1)(2)(3)

Background: Crops such as maize, sorghum, and millet are being biofortified with provitamin A carotenoids to ensure adequate vitamin A (VA) intakes. VA assessment can be challenging because serum retinol concentrations are homeostatically controlled and more sensitive techniques are resource-intensi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gannon, Bryan M, Pungarcher, India, Mourao, Luciana, Davis, Christopher R, Simon, Philipp, Pixley, Kevin V, Tanumihardjo, Sherry A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Nutrition 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926851/
https://www.ncbi.nlm.nih.gov/pubmed/27281810
http://dx.doi.org/10.3945/jn.116.230300
_version_ 1782440196041605120
author Gannon, Bryan M
Pungarcher, India
Mourao, Luciana
Davis, Christopher R
Simon, Philipp
Pixley, Kevin V
Tanumihardjo, Sherry A
author_facet Gannon, Bryan M
Pungarcher, India
Mourao, Luciana
Davis, Christopher R
Simon, Philipp
Pixley, Kevin V
Tanumihardjo, Sherry A
author_sort Gannon, Bryan M
collection PubMed
description Background: Crops such as maize, sorghum, and millet are being biofortified with provitamin A carotenoids to ensure adequate vitamin A (VA) intakes. VA assessment can be challenging because serum retinol concentrations are homeostatically controlled and more sensitive techniques are resource-intensive. Objectives: We investigated changes in serum retinol relative differences of isotope amount ratios of (13)C/(12)C (δ(13)C) caused by natural (13)C fractionation in C(3) compared with C(4) plants as a biomarker to detect provitamin A efficacy from biofortified (orange) maize and high-carotene carrots. Methods: The design was a 2 × 2 × 2 maize (orange compared with white) by carrot (orange compared with white) by a VA fortificant (VA+ compared with VA−) in weanling male Mongolian gerbils (n = 55), which included a 14-d VA depletion period and a 62-d treatment period (1 baseline and 8 treatment groups; n = 5−7/group). Liver VA and serum retinol were quantified, purified by HPLC, and analyzed by GC combustion isotope ratio mass spectrometry for (13)C. Results: Treatments affected liver VA concentrations (0.048 ± 0.039 to 0.79 ± 0.24 μmol/g; P < 0.0001) but not overall serum retinol concentrations (1.38 ± 0.22 μmol/L). Serum retinol and liver VA δ(13)C were significantly correlated (R(2) = 0.92; P < 0.0001). Serum retinol δ(13)C differentiated control groups that consumed white maize and white carrots (−27.1 ± 1.2 δ(13)C‰) from treated groups that consumed orange maize and white carrots (−21.6 ± 1.4 δ(13)C‰ P < 0.0001) and white maize and orange carrots (−30.6 ± 0.7 δ(13)C‰ P < 0.0001). A prediction model demonstrated the relative contribution of orange maize to total dietary VA for groups that consumed VA from mixed sources. Conclusions: Provitamin A efficacy and quantitative estimation of the relative contribution to dietary VA were demonstrated with the use of serum retinol δ(13)C. This method could be used for maize efficacy or effectiveness studies and with other C(4) crops biofortified with provitamin A carotenoids (e.g., millet, sorghum). Advantages include no extrinsic tracer dose, 1 blood sample, and higher sensitivity than serum retinol concentrations alone.
format Online
Article
Text
id pubmed-4926851
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Society for Nutrition
record_format MEDLINE/PubMed
spelling pubmed-49268512016-09-14 (13)C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils(1)(2)(3) Gannon, Bryan M Pungarcher, India Mourao, Luciana Davis, Christopher R Simon, Philipp Pixley, Kevin V Tanumihardjo, Sherry A J Nutr Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions Background: Crops such as maize, sorghum, and millet are being biofortified with provitamin A carotenoids to ensure adequate vitamin A (VA) intakes. VA assessment can be challenging because serum retinol concentrations are homeostatically controlled and more sensitive techniques are resource-intensive. Objectives: We investigated changes in serum retinol relative differences of isotope amount ratios of (13)C/(12)C (δ(13)C) caused by natural (13)C fractionation in C(3) compared with C(4) plants as a biomarker to detect provitamin A efficacy from biofortified (orange) maize and high-carotene carrots. Methods: The design was a 2 × 2 × 2 maize (orange compared with white) by carrot (orange compared with white) by a VA fortificant (VA+ compared with VA−) in weanling male Mongolian gerbils (n = 55), which included a 14-d VA depletion period and a 62-d treatment period (1 baseline and 8 treatment groups; n = 5−7/group). Liver VA and serum retinol were quantified, purified by HPLC, and analyzed by GC combustion isotope ratio mass spectrometry for (13)C. Results: Treatments affected liver VA concentrations (0.048 ± 0.039 to 0.79 ± 0.24 μmol/g; P < 0.0001) but not overall serum retinol concentrations (1.38 ± 0.22 μmol/L). Serum retinol and liver VA δ(13)C were significantly correlated (R(2) = 0.92; P < 0.0001). Serum retinol δ(13)C differentiated control groups that consumed white maize and white carrots (−27.1 ± 1.2 δ(13)C‰) from treated groups that consumed orange maize and white carrots (−21.6 ± 1.4 δ(13)C‰ P < 0.0001) and white maize and orange carrots (−30.6 ± 0.7 δ(13)C‰ P < 0.0001). A prediction model demonstrated the relative contribution of orange maize to total dietary VA for groups that consumed VA from mixed sources. Conclusions: Provitamin A efficacy and quantitative estimation of the relative contribution to dietary VA were demonstrated with the use of serum retinol δ(13)C. This method could be used for maize efficacy or effectiveness studies and with other C(4) crops biofortified with provitamin A carotenoids (e.g., millet, sorghum). Advantages include no extrinsic tracer dose, 1 blood sample, and higher sensitivity than serum retinol concentrations alone. American Society for Nutrition 2016-07 2016-06-08 /pmc/articles/PMC4926851/ /pubmed/27281810 http://dx.doi.org/10.3945/jn.116.230300 Text en http://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the CC-BY license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions
Gannon, Bryan M
Pungarcher, India
Mourao, Luciana
Davis, Christopher R
Simon, Philipp
Pixley, Kevin V
Tanumihardjo, Sherry A
(13)C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils(1)(2)(3)
title (13)C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils(1)(2)(3)
title_full (13)C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils(1)(2)(3)
title_fullStr (13)C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils(1)(2)(3)
title_full_unstemmed (13)C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils(1)(2)(3)
title_short (13)C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils(1)(2)(3)
title_sort (13)c natural abundance of serum retinol is a novel biomarker for evaluating provitamin a carotenoid-biofortified maize consumption in male mongolian gerbils(1)(2)(3)
topic Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926851/
https://www.ncbi.nlm.nih.gov/pubmed/27281810
http://dx.doi.org/10.3945/jn.116.230300
work_keys_str_mv AT gannonbryanm 13cnaturalabundanceofserumretinolisanovelbiomarkerforevaluatingprovitaminacarotenoidbiofortifiedmaizeconsumptioninmalemongoliangerbils123
AT pungarcherindia 13cnaturalabundanceofserumretinolisanovelbiomarkerforevaluatingprovitaminacarotenoidbiofortifiedmaizeconsumptioninmalemongoliangerbils123
AT mouraoluciana 13cnaturalabundanceofserumretinolisanovelbiomarkerforevaluatingprovitaminacarotenoidbiofortifiedmaizeconsumptioninmalemongoliangerbils123
AT davischristopherr 13cnaturalabundanceofserumretinolisanovelbiomarkerforevaluatingprovitaminacarotenoidbiofortifiedmaizeconsumptioninmalemongoliangerbils123
AT simonphilipp 13cnaturalabundanceofserumretinolisanovelbiomarkerforevaluatingprovitaminacarotenoidbiofortifiedmaizeconsumptioninmalemongoliangerbils123
AT pixleykevinv 13cnaturalabundanceofserumretinolisanovelbiomarkerforevaluatingprovitaminacarotenoidbiofortifiedmaizeconsumptioninmalemongoliangerbils123
AT tanumihardjosherrya 13cnaturalabundanceofserumretinolisanovelbiomarkerforevaluatingprovitaminacarotenoidbiofortifiedmaizeconsumptioninmalemongoliangerbils123