Cargando…
Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints
The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segme...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927181/ https://www.ncbi.nlm.nih.gov/pubmed/27355236 http://dx.doi.org/10.1371/journal.pbio.1002498 |
_version_ | 1782440234327212032 |
---|---|
author | Keitel, Anne Gross, Joachim |
author_facet | Keitel, Anne Gross, Joachim |
author_sort | Keitel, Anne |
collection | PubMed |
description | The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles (“fingerprints”), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease. |
format | Online Article Text |
id | pubmed-4927181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49271812016-07-18 Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints Keitel, Anne Gross, Joachim PLoS Biol Research Article The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles (“fingerprints”), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease. Public Library of Science 2016-06-29 /pmc/articles/PMC4927181/ /pubmed/27355236 http://dx.doi.org/10.1371/journal.pbio.1002498 Text en © 2016 Keitel, Gross http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Keitel, Anne Gross, Joachim Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints |
title | Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints |
title_full | Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints |
title_fullStr | Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints |
title_full_unstemmed | Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints |
title_short | Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints |
title_sort | individual human brain areas can be identified from their characteristic spectral activation fingerprints |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927181/ https://www.ncbi.nlm.nih.gov/pubmed/27355236 http://dx.doi.org/10.1371/journal.pbio.1002498 |
work_keys_str_mv | AT keitelanne individualhumanbrainareascanbeidentifiedfromtheircharacteristicspectralactivationfingerprints AT grossjoachim individualhumanbrainareascanbeidentifiedfromtheircharacteristicspectralactivationfingerprints |