Cargando…

Mass-spectrometry analysis of histone post-translational modifications in pathology tissue using the PAT-H-MS approach

Aberrant histone post-translational modifications (hPTMs) have been implicated with various pathologies, including cancer, and may represent useful epigenetic biomarkers. The data described here provide a mass spectrometry-based quantitative analysis of hPTMs from formalin-fixed paraffin-embedded (F...

Descripción completa

Detalles Bibliográficos
Autores principales: Noberini, Roberta, Pruneri, Giancarlo, Minucci, Saverio, Bonaldi, Tiziana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927966/
https://www.ncbi.nlm.nih.gov/pubmed/27408908
http://dx.doi.org/10.1016/j.dib.2016.02.028
Descripción
Sumario:Aberrant histone post-translational modifications (hPTMs) have been implicated with various pathologies, including cancer, and may represent useful epigenetic biomarkers. The data described here provide a mass spectrometry-based quantitative analysis of hPTMs from formalin-fixed paraffin-embedded (FFPE) tissues, from which histones were extracted through the recently developed PAT-H-MS method. First, we analyzed FFPE samples from mouse spleen and liver or human breast cancer up to six years old, together with their corresponding fresh frozen tissue. We then combined the PAT-H-MS approach with a histone-focused version of the super-SILAC strategy-using a mix of histones from four breast cancer cell lines as a spike-in standard- to accurately quantify hPTMs from breast cancer specimens belonging to different subtypes. The data, which are associated with a recent publication (Pathology tissue-quantitative mass spectrometry analysis to profile histone post-translational modification patterns in patient samples (Noberini, 2015) [1]), are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD002669.