Cargando…
Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
BACKGROUND: With millisecond-level resolution, electroencephalographic (EEG) recording provides a sensitive tool to assay neural dynamics of human cognition. However, selection of EEG features used to answer experimental questions is typically determined a priori. The utility of machine learning was...
Autores principales: | Johannesen, Jason K., Bi, Jinbo, Jiang, Ruhua, Kenney, Joshua G., Chen, Chi-Ming A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928381/ https://www.ncbi.nlm.nih.gov/pubmed/27375854 http://dx.doi.org/10.1186/s40810-016-0017-0 |
Ejemplares similares
-
Working Memory Training in Schizophrenia and Healthy Populations
por: Lawlor-Savage, Linette, et al.
Publicado: (2014) -
Dense attention network identifies EEG abnormalities during working memory performance of patients with schizophrenia
por: Perellón-Alfonso, Ruben, et al.
Publicado: (2023) -
Cognitive training, but not EEG-neurofeedback, improves working memory in healthy volunteers
por: Barbazzeni, Beatrice, et al.
Publicado: (2023) -
EEG correlates of working memory performance in females
por: Pavlov, Yuri G., et al.
Publicado: (2017) -
EEG correlates of verbal and nonverbal working memory
por: Hwang, Grace, et al.
Publicado: (2005)