Cargando…

Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites

Ultrafast spin manipulation for opto–spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considere...

Descripción completa

Detalles Bibliográficos
Autores principales: Giovanni, David, Chong, Wee Kiang, Dewi, Herlina Arianita, Thirumal, Krishnamoorthy, Neogi, Ishita, Ramesh, Ramamoorthy, Mhaisalkar, Subodh, Mathews, Nripan, Sum, Tze Chien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928968/
https://www.ncbi.nlm.nih.gov/pubmed/27386583
http://dx.doi.org/10.1126/sciadv.1600477
_version_ 1782440532680638464
author Giovanni, David
Chong, Wee Kiang
Dewi, Herlina Arianita
Thirumal, Krishnamoorthy
Neogi, Ishita
Ramesh, Ramamoorthy
Mhaisalkar, Subodh
Mathews, Nripan
Sum, Tze Chien
author_facet Giovanni, David
Chong, Wee Kiang
Dewi, Herlina Arianita
Thirumal, Krishnamoorthy
Neogi, Ishita
Ramesh, Ramamoorthy
Mhaisalkar, Subodh
Mathews, Nripan
Sum, Tze Chien
author_sort Giovanni, David
collection PubMed
description Ultrafast spin manipulation for opto–spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C(6)H(4)FC(2)H(4)NH(3))(2)PbI(4) perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength.
format Online
Article
Text
id pubmed-4928968
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-49289682016-07-06 Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites Giovanni, David Chong, Wee Kiang Dewi, Herlina Arianita Thirumal, Krishnamoorthy Neogi, Ishita Ramesh, Ramamoorthy Mhaisalkar, Subodh Mathews, Nripan Sum, Tze Chien Sci Adv Research Articles Ultrafast spin manipulation for opto–spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C(6)H(4)FC(2)H(4)NH(3))(2)PbI(4) perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength. American Association for the Advancement of Science 2016-06-17 /pmc/articles/PMC4928968/ /pubmed/27386583 http://dx.doi.org/10.1126/sciadv.1600477 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Giovanni, David
Chong, Wee Kiang
Dewi, Herlina Arianita
Thirumal, Krishnamoorthy
Neogi, Ishita
Ramesh, Ramamoorthy
Mhaisalkar, Subodh
Mathews, Nripan
Sum, Tze Chien
Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites
title Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites
title_full Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites
title_fullStr Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites
title_full_unstemmed Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites
title_short Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites
title_sort tunable room-temperature spin-selective optical stark effect in solution-processed layered halide perovskites
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928968/
https://www.ncbi.nlm.nih.gov/pubmed/27386583
http://dx.doi.org/10.1126/sciadv.1600477
work_keys_str_mv AT giovannidavid tunableroomtemperaturespinselectiveopticalstarkeffectinsolutionprocessedlayeredhalideperovskites
AT chongweekiang tunableroomtemperaturespinselectiveopticalstarkeffectinsolutionprocessedlayeredhalideperovskites
AT dewiherlinaarianita tunableroomtemperaturespinselectiveopticalstarkeffectinsolutionprocessedlayeredhalideperovskites
AT thirumalkrishnamoorthy tunableroomtemperaturespinselectiveopticalstarkeffectinsolutionprocessedlayeredhalideperovskites
AT neogiishita tunableroomtemperaturespinselectiveopticalstarkeffectinsolutionprocessedlayeredhalideperovskites
AT rameshramamoorthy tunableroomtemperaturespinselectiveopticalstarkeffectinsolutionprocessedlayeredhalideperovskites
AT mhaisalkarsubodh tunableroomtemperaturespinselectiveopticalstarkeffectinsolutionprocessedlayeredhalideperovskites
AT mathewsnripan tunableroomtemperaturespinselectiveopticalstarkeffectinsolutionprocessedlayeredhalideperovskites
AT sumtzechien tunableroomtemperaturespinselectiveopticalstarkeffectinsolutionprocessedlayeredhalideperovskites