Cargando…
Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae
Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928981/ https://www.ncbi.nlm.nih.gov/pubmed/27386516 http://dx.doi.org/10.1126/sciadv.1501033 |
_version_ | 1782440535412178944 |
---|---|
author | McDonald, Michael J. Yu, Yen-Hsin Guo, Jheng-Fen Chong, Shin Yen Kao, Cheng-Fu Leu, Jun-Yi |
author_facet | McDonald, Michael J. Yu, Yen-Hsin Guo, Jheng-Fen Chong, Shin Yen Kao, Cheng-Fu Leu, Jun-Yi |
author_sort | McDonald, Michael J. |
collection | PubMed |
description | Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G(13+)) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G(13+) mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. |
format | Online Article Text |
id | pubmed-4928981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49289812016-07-06 Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae McDonald, Michael J. Yu, Yen-Hsin Guo, Jheng-Fen Chong, Shin Yen Kao, Cheng-Fu Leu, Jun-Yi Sci Adv Research Articles Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G(13+)) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G(13+) mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. American Association for the Advancement of Science 2016-05-27 /pmc/articles/PMC4928981/ /pubmed/27386516 http://dx.doi.org/10.1126/sciadv.1501033 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles McDonald, Michael J. Yu, Yen-Hsin Guo, Jheng-Fen Chong, Shin Yen Kao, Cheng-Fu Leu, Jun-Yi Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae |
title | Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae |
title_full | Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae |
title_fullStr | Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae |
title_full_unstemmed | Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae |
title_short | Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae |
title_sort | mutation at a distance caused by homopolymeric guanine repeats in saccharomyces cerevisiae |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928981/ https://www.ncbi.nlm.nih.gov/pubmed/27386516 http://dx.doi.org/10.1126/sciadv.1501033 |
work_keys_str_mv | AT mcdonaldmichaelj mutationatadistancecausedbyhomopolymericguaninerepeatsinsaccharomycescerevisiae AT yuyenhsin mutationatadistancecausedbyhomopolymericguaninerepeatsinsaccharomycescerevisiae AT guojhengfen mutationatadistancecausedbyhomopolymericguaninerepeatsinsaccharomycescerevisiae AT chongshinyen mutationatadistancecausedbyhomopolymericguaninerepeatsinsaccharomycescerevisiae AT kaochengfu mutationatadistancecausedbyhomopolymericguaninerepeatsinsaccharomycescerevisiae AT leujunyi mutationatadistancecausedbyhomopolymericguaninerepeatsinsaccharomycescerevisiae |