Cargando…

Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate

BACKGROUND: Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonvini, Sara J., Birrell, Mark A., Grace, Megan S., Maher, Sarah A., Adcock, John J., Wortley, Michael A., Dubuis, Eric, Ching, Yee-Man, Ford, Anthony P., Shala, Fisnik, Miralpeix, Montserrat, Tarrason, Gema, Smith, Jaclyn A., Belvisi, Maria G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mosby 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929136/
https://www.ncbi.nlm.nih.gov/pubmed/26792207
http://dx.doi.org/10.1016/j.jaci.2015.10.044
Descripción
Sumario:BACKGROUND: Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored. OBJECTIVE: We hypothesized that TRPV4 is expressed on airway afferents and is a key osmosensor initiating reflex events in the lung. METHODS: We used guinea pig primary cells, tissue bioassay, in vivo electrophysiology, and a guinea pig conscious cough model to investigate a role for TRPV4 in mediating sensory nerve activation in vagal afferents and the possible downstream signaling mechanisms. Human vagus nerve was used to confirm key observations in animal tissues. RESULTS: Here we show TRPV4-induced activation of guinea pig airway–specific primary nodose ganglion cells. TRPV4 ligands and hypo-osmotic solutions caused depolarization of murine, guinea pig, and human vagus and firing of Aδ-fibers (not C-fibers), which was inhibited by TRPV4 and P2X3 receptor antagonists. Both antagonists blocked TRPV4-induced cough. CONCLUSION: This study identifies the TRPV4-ATP-P2X3 interaction as a key osmosensing pathway involved in airway sensory nerve reflexes. The absence of TRPV4-ATP–mediated effects on C-fibers indicates a distinct neurobiology for this ion channel and implicates TRPV4 as a novel therapeutic target for neuronal hyperresponsiveness in the airways and symptoms, such as cough.