Cargando…

Suppressive action of miRNAs to ARP2/3 complex reduces cell migration and proliferation via RAC isoforms in Hirschsprung disease

Hirschsprung disease (HSCR) is a congenital disorder caused by the defective function of the embryonic enteric neural crest. The impaired migration of embryonic enteric neural crest plays an important role in the pathogenesis of this disease. Recent studies showed that the ARP2/3 complex and RAC iso...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Weibing, Cai, Peng, Huo, Weiwei, Li, Hongxing, Tang, Junwei, Zhu, Dongmei, Xie, Hua, Chen, Pingfa, Hang, Bo, Wang, Shouyu, Xia, Yankai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929290/
https://www.ncbi.nlm.nih.gov/pubmed/26991540
http://dx.doi.org/10.1111/jcmm.12799
Descripción
Sumario:Hirschsprung disease (HSCR) is a congenital disorder caused by the defective function of the embryonic enteric neural crest. The impaired migration of embryonic enteric neural crest plays an important role in the pathogenesis of this disease. Recent studies showed that the ARP2/3 complex and RAC isoforms had effects on actin cytoskeleton remodelling, which contributes to migration. Moreover, some regulatory relationships were identified between ARP2/3 complex and RAC isoforms. Although microRNAs (miRNAs) have been known to modulate target gene expression on the post‐transcriptional level, little is known about the regulation among miRNAs, ARP2/3 complex and RAC isoforms. Here, we report that down‐regulation of ARP2 and ARP3, two main subunits of ARP2/3 complex, suppressed migration and proliferation in 293T and SH‐SY5Y cell lines via the inhibition of RAC1 and RAC2. Meanwhile, as the target genes, ARP2 and ARP3 are reduced by increased miR‐24‐1* and let‐7a*, respectively, in 70 HSCR samples as compared with 74 normal controls. Co‐immunoprecipitation showed that aberrant reduction in ARP2 and ARP3 could weaken the function of ARP2/3 complex. Our study demonstrates that the miR‐24‐1*/let‐7a*‐ARP2/3 complex‐RAC isoforms pathway may represent a novel pathogenic mechanism for HSCR.