Cargando…
Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic...
Autores principales: | Kazantsev, Daniil, Guo, Enyu, Kaestner, Anders, Lionheart, William R. B., Bent, Julian, Withers, Philip J., Lee, Peter D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929339/ https://www.ncbi.nlm.nih.gov/pubmed/27002902 http://dx.doi.org/10.3233/XST-160546 |
Ejemplares similares
-
Multimodal Image Reconstruction Using Supplementary Structural Information in Total Variation Regularization
por: Kazantsev, Daniil, et al.
Publicado: (2014) -
Image Compressive Sensing via Hybrid Nonlocal Sparsity Regularization
por: Li, Lizhao, et al.
Publicado: (2020) -
Employing temporal self-similarity across the entire time domain in computed tomography reconstruction
por: Kazantsev, D., et al.
Publicado: (2015) -
Compressed sensing cardiac MRI exploiting spatio-temporal sparsity
por: Zamani, Jafar, et al.
Publicado: (2013) -
Compressed Sensing MR Image Reconstruction Exploiting TGV and Wavelet Sparsity
por: Zhao, Di, et al.
Publicado: (2014)