Cargando…
Shapes of minimal-energy DNA ropes condensed in confinement
Shapes of a single, long DNA molecule condensed in a confinement of a virus capsid are described as conformations optimizing a model free energy functional accounting for the interplay between the bending energy of the DNA and the surface energy of the DNA bundled in a “rope”. The rope is formed by...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929500/ https://www.ncbi.nlm.nih.gov/pubmed/27364168 http://dx.doi.org/10.1038/srep29012 |
Sumario: | Shapes of a single, long DNA molecule condensed in a confinement of a virus capsid are described as conformations optimizing a model free energy functional accounting for the interplay between the bending energy of the DNA and the surface energy of the DNA bundled in a “rope”. The rope is formed by bundled DNA brought together by (self-)attractive interactions. The conformations predicted by the model depend on the shape of the confinement, the total amount of the packed DNA but also on the relative contributions of the bending and surface energies. Some of the conformations found were not predicted previously, but many previously proposed DNA conformations, some of which are seemingly contradictory, were found as the solutions of the model. The results show that there are many possible packing conformations of the DNA and that the one which realizes in a particular virus depends on the capsid geometry and the nature of condensing agents. |
---|