Cargando…

Realized niche shift associated with the Eurasian charophyte Nitellopsis obtusa becoming invasive in North America

Nitellopsis obtusa (starry stonewort) is a dioecious green alga native to Europe and Asia that has emerged as an aquatic invasive species in North America. Nitellopsis obtusa is rare across large portions of its native range, but has spread rapidly in northern-tier lakes in the United States, where...

Descripción completa

Detalles Bibliográficos
Autores principales: Escobar, Luis E., Qiao, Huijie, Phelps, Nicholas B. D., Wagner, Carli K., Larkin, Daniel J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929560/
https://www.ncbi.nlm.nih.gov/pubmed/27363541
http://dx.doi.org/10.1038/srep29037
Descripción
Sumario:Nitellopsis obtusa (starry stonewort) is a dioecious green alga native to Europe and Asia that has emerged as an aquatic invasive species in North America. Nitellopsis obtusa is rare across large portions of its native range, but has spread rapidly in northern-tier lakes in the United States, where it can interfere with recreation and may displace native species. Little is known about the invasion ecology of N. obtusa, making it difficult to forecast future expansion. Using ecological niche modeling we investigated environmental variables associated with invasion risk. We used species records, climate data, and remotely sensed environmental variables to characterize the species’ multidimensional distribution. We found that N. obtusa is exploiting novel ecological niche space in its introduced range, which may help explain its invasiveness. While the fundamental niche of N. obtusa may be stable, there appears to have been a shift in its realized niche associated with invasion in North America. Large portions of the United States are predicted to constitute highly suitable habitat for N. obtusa. Our results can inform early detection and rapid response efforts targeting N. obtusa and provide testable estimates of the physiological tolerances of this species as a baseline for future empirical research.