Cargando…
Evidence for cohesin sliding along budding yeast chromosomes
The ring-shaped cohesin complex is thought to topologically hold sister chromatids together from their synthesis in S phase until chromosome segregation in mitosis. How cohesin stably binds to chromosomes for extended periods, without impeding other chromosomal processes that also require access to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929932/ https://www.ncbi.nlm.nih.gov/pubmed/27278645 http://dx.doi.org/10.1098/rsob.150178 |
_version_ | 1782440676879761408 |
---|---|
author | Ocampo-Hafalla, Maria Muñoz, Sofía Samora, Catarina P. Uhlmann, Frank |
author_facet | Ocampo-Hafalla, Maria Muñoz, Sofía Samora, Catarina P. Uhlmann, Frank |
author_sort | Ocampo-Hafalla, Maria |
collection | PubMed |
description | The ring-shaped cohesin complex is thought to topologically hold sister chromatids together from their synthesis in S phase until chromosome segregation in mitosis. How cohesin stably binds to chromosomes for extended periods, without impeding other chromosomal processes that also require access to the DNA, is poorly understood. Budding yeast cohesin is loaded onto DNA by the Scc2–Scc4 cohesin loader at centromeres and promoters of active genes, from where cohesin translocates to more permanent places of residence at transcription termination sites. Here we show that, at the GAL2 and MET17 loci, pre-existing cohesin is pushed downstream along the DNA in response to transcriptional gene activation, apparently without need for intermittent dissociation or reloading. We observe translocation intermediates and find that the distribution of most chromosomal cohesin is shaped by transcription. Our observations support a model in which cohesin is able to slide laterally along chromosomes while maintaining topological contact with DNA. In this way, stable cohesin binding to DNA and enduring sister chromatid cohesion become compatible with simultaneous underlying chromosomal activities, including but maybe not limited to transcription. |
format | Online Article Text |
id | pubmed-4929932 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-49299322016-07-15 Evidence for cohesin sliding along budding yeast chromosomes Ocampo-Hafalla, Maria Muñoz, Sofía Samora, Catarina P. Uhlmann, Frank Open Biol Research The ring-shaped cohesin complex is thought to topologically hold sister chromatids together from their synthesis in S phase until chromosome segregation in mitosis. How cohesin stably binds to chromosomes for extended periods, without impeding other chromosomal processes that also require access to the DNA, is poorly understood. Budding yeast cohesin is loaded onto DNA by the Scc2–Scc4 cohesin loader at centromeres and promoters of active genes, from where cohesin translocates to more permanent places of residence at transcription termination sites. Here we show that, at the GAL2 and MET17 loci, pre-existing cohesin is pushed downstream along the DNA in response to transcriptional gene activation, apparently without need for intermittent dissociation or reloading. We observe translocation intermediates and find that the distribution of most chromosomal cohesin is shaped by transcription. Our observations support a model in which cohesin is able to slide laterally along chromosomes while maintaining topological contact with DNA. In this way, stable cohesin binding to DNA and enduring sister chromatid cohesion become compatible with simultaneous underlying chromosomal activities, including but maybe not limited to transcription. The Royal Society 2016-06-08 /pmc/articles/PMC4929932/ /pubmed/27278645 http://dx.doi.org/10.1098/rsob.150178 Text en © 2016 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Ocampo-Hafalla, Maria Muñoz, Sofía Samora, Catarina P. Uhlmann, Frank Evidence for cohesin sliding along budding yeast chromosomes |
title | Evidence for cohesin sliding along budding yeast chromosomes |
title_full | Evidence for cohesin sliding along budding yeast chromosomes |
title_fullStr | Evidence for cohesin sliding along budding yeast chromosomes |
title_full_unstemmed | Evidence for cohesin sliding along budding yeast chromosomes |
title_short | Evidence for cohesin sliding along budding yeast chromosomes |
title_sort | evidence for cohesin sliding along budding yeast chromosomes |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929932/ https://www.ncbi.nlm.nih.gov/pubmed/27278645 http://dx.doi.org/10.1098/rsob.150178 |
work_keys_str_mv | AT ocampohafallamaria evidenceforcohesinslidingalongbuddingyeastchromosomes AT munozsofia evidenceforcohesinslidingalongbuddingyeastchromosomes AT samoracatarinap evidenceforcohesinslidingalongbuddingyeastchromosomes AT uhlmannfrank evidenceforcohesinslidingalongbuddingyeastchromosomes |