Cargando…
Data-driven hypothesis weighting increases detection power in genome-scale multiple testing
Hypothesis weighting improves the power of large-scale multiple testing. We describe a method that uses covariates independent of the p-values under the null hypothesis, but informative of each test’s power or prior probability of the null hypothesis. Independent hypothesis weighting (IHW) increases...
Autores principales: | Ignatiadis, Nikolaos, Klaus, Bernd, Zaugg, Judith, Huber, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930141/ https://www.ncbi.nlm.nih.gov/pubmed/27240256 http://dx.doi.org/10.1038/nmeth.3885 |
Ejemplares similares
-
Fast and covariate-adaptive method amplifies detection power in large-scale multiple hypothesis testing
por: Zhang, Martin J., et al.
Publicado: (2019) -
Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies
por: Mieth, Bettina, et al.
Publicado: (2016) -
Hypothesis-driven Research
por: Rao, Umadevi Krishnamohan
Publicado: (2019) -
Stouffer’s Test in a Large Scale Simultaneous Hypothesis Testing
por: Kim, Sang Cheol, et al.
Publicado: (2013) -
Priors, population sizes, and power in genome-wide hypothesis tests
por: Cai, Jitong, et al.
Publicado: (2023)