Cargando…
Integrating Expert Knowledge with Data in Bayesian Networks: Preserving Data-Driven Expectations when the Expert Variables Remain Unobserved
When developing a causal probabilistic model, i.e. a Bayesian network (BN), it is common to incorporate expert knowledge of factors that are important for decision analysis but where historical data are unavailable or difficult to obtain. This paper focuses on the problem whereby the distribution of...
Autores principales: | Constantinou, Anthony Costa, Fenton, Norman, Neil, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930146/ https://www.ncbi.nlm.nih.gov/pubmed/27378822 http://dx.doi.org/10.1016/j.eswa.2016.02.050 |
Ejemplares similares
-
Zipf’s Law Arises Naturally When There Are Underlying, Unobserved Variables
por: Aitchison, Laurence, et al.
Publicado: (2016) -
Unobserved variables: models and misunderstandings
por: Bartholomew, David J
Publicado: (2013) -
PILGRM: an interactive data-driven discovery platform for expert biologists
por: Greene, Casey S., et al.
Publicado: (2011) -
Comparing the Quality of Crowdsourced Data Contributed by Expert and Non-Experts
por: See, Linda, et al.
Publicado: (2013) -
From complex questionnaire and interviewing data to intelligent Bayesian Network models for medical decision support
por: Constantinou, Anthony Costa, et al.
Publicado: (2016)