Cargando…

Spatial selective manipulation of microbubbles by tunable surface acoustic waves

A microfluidic device based on a pair of slant-finger interdigital transducers (SFITs) is developed to achieve a selective and flexible manipulation of microbubbles (MBs) by surface acoustic waves (SAWs). The resonance frequency of SAWs generated by the SFITs depends on the location of its parallel...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Wei, Niu, Lili, Cai, Feiyan, Li, Fei, Wang, Chen, Huang, Xiaowei, Wang, Jingjing, Wu, Junru, Meng, Long, Zheng, Hairong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930446/
https://www.ncbi.nlm.nih.gov/pubmed/27462381
http://dx.doi.org/10.1063/1.4954934
Descripción
Sumario:A microfluidic device based on a pair of slant-finger interdigital transducers (SFITs) is developed to achieve a selective and flexible manipulation of microbubbles (MBs) by surface acoustic waves (SAWs). The resonance frequency of SAWs generated by the SFITs depends on the location of its parallel pathway; the particles at different locations of the SAWs' pathway can be controlled selectively by choosing the frequency of the excitation signal applied on the SFITs. By adjusting the input signal continuously, MBs can be transported along the acoustic aperture precisely. The displacement of MBs has a linear relationship with the frequency shift. The resolution of transportation is 15.19 ± 2.65 μm when the shift of input signal frequency is at a step of 10 kHz. In addition, the MBs can be controlled in a two-dimensional plane by combining variations of the frequency and the relative phase of the excitation signal applied on the SFITs simultaneously. This technology may open up the possibility of selectively and flexibly manipulating MBs using a simple one-dimensional device.