Cargando…
GiniClust: detecting rare cell types from single-cell gene expression data with Gini index
High-throughput single-cell technologies have great potential to discover new cell types; however, it remains challenging to detect rare cell types that are distinct from a large population. We present a novel computational method, called GiniClust, to overcome this challenge. Validation against a b...
Autores principales: | Jiang, Lan, Chen, Huidong, Pinello, Luca, Yuan, Guo-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930624/ https://www.ncbi.nlm.nih.gov/pubmed/27368803 http://dx.doi.org/10.1186/s13059-016-1010-4 |
Ejemplares similares
-
GiniClust2: a cluster-aware, weighted ensemble clustering method for cell-type detection
por: Tsoucas, Daphne, et al.
Publicado: (2018) -
GiniClust3: a fast and memory-efficient tool for rare cell type identification
por: Dong, Rui, et al.
Publicado: (2020) -
The revival of the Gini importance?
por: Nembrini, Stefano, et al.
Publicado: (2018) -
Polar Gini Curve: A Technique to Discover Gene Expression Spatial Patterns from Single-cell RNA-seq Data
por: Nguyen, Thanh Minh, et al.
Publicado: (2021) -
Spectral Gini Index for Quantifying the Depth of Consciousness
por: You, Kyung-Jin, et al.
Publicado: (2016)