Cargando…

The Relationship of Oxidation Sensitivity of Red Blood Cells and Carbonic Anhydrase Activity in Stored Human Blood: Effect of Certain Phenolic Compounds

It has been reported that many modifications occur with the increase of oxidative stress during storage in erythrocytes. In order to delay these negative changes, we evaluated whether the addition of substances likely to protect antioxidant capacity in stored blood would be useful. Therefore, we inv...

Descripción completa

Detalles Bibliográficos
Autores principales: Huyut, Zübeyir, Şekeroğlu, Mehmet Ramazan, Balahoroğlu, Ragıp, Karakoyun, Tahsin, Çokluk, Erdem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931059/
https://www.ncbi.nlm.nih.gov/pubmed/27413740
http://dx.doi.org/10.1155/2016/3057384
Descripción
Sumario:It has been reported that many modifications occur with the increase of oxidative stress during storage in erythrocytes. In order to delay these negative changes, we evaluated whether the addition of substances likely to protect antioxidant capacity in stored blood would be useful. Therefore, we investigated the effects of resveratrol, tannic acid, and caffeic acid in lipid peroxidation and antioxidant capacity of erythrocytes in stored blood. Donated blood was taken into four CPD containing blood bags. One bag was used as the control, and the others were supplemented with caffeic acid (30 μg/mL), resveratrol (30 μg/mL), and tannic acid (15 μg/mL), respectively. Erythrocyte lipid peroxidation, sensitivity to oxidation, glutathione levels and carbonic anhydrase, glutathione peroxidase, and catalase activities were measured on days 0, 7, 14, 21, and 28. In the control group, erythrocyte malondialdehyde levels and sensitivity to oxidation were increased whereas glutathione, glutathione peroxidase, and catalase levels were decreased (p < 0.05). Resveratrol and caffeic acid prevented malondialdehyde accumulation and preserved glutathione, glutathione peroxidase, and catalase activities in erythrocytes. We demonstrated that resveratrol, caffeic acid, and tannic acid in stored blood could decrease the sensitivity to oxidation of erythrocytes in vitro but did not exhibit such effects on CA activity.