Cargando…

Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem

A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase...

Descripción completa

Detalles Bibliográficos
Autores principales: Frausto-Solis, Juan, Liñán-García, Ernesto, Sánchez-Hernández, Juan Paulo, González-Barbosa, J. Javier, González-Flores, Carlos, Castilla-Valdez, Guadalupe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931103/
https://www.ncbi.nlm.nih.gov/pubmed/27413369
http://dx.doi.org/10.1155/2016/7357123
Descripción
Sumario:A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.