Cargando…

Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis

Despite intense research in past decades, the lack of high-performance catalysts for fuel cell reactions remains a challenge in realizing fuel cell technologies for transportation applications. Here we report a facile strategy for synthesizing hierarchical platinum-cobalt nanowires with high-index,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bu, Lingzheng, Guo, Shaojun, Zhang, Xu, Shen, Xuan, Su, Dong, Lu, Gang, Zhu, Xing, Yao, Jianlin, Guo, Jun, Huang, Xiaoqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931244/
https://www.ncbi.nlm.nih.gov/pubmed/27353725
http://dx.doi.org/10.1038/ncomms11850
Descripción
Sumario:Despite intense research in past decades, the lack of high-performance catalysts for fuel cell reactions remains a challenge in realizing fuel cell technologies for transportation applications. Here we report a facile strategy for synthesizing hierarchical platinum-cobalt nanowires with high-index, platinum-rich facets and ordered intermetallic structure. These structural features enable unprecedented performance for the oxygen reduction and alcohol oxidation reactions. The specific/mass activities of the platinum-cobalt nanowires for oxygen reduction reaction are 39.6/33.7 times higher than commercial Pt/C catalyst, respectively. Density functional theory simulations reveal that the active threefold hollow sites on the platinum-rich high-index facets provide an additional factor in enhancing oxygen reduction reaction activities. The nanowires are stable in the electrochemical conditions and also thermally stable. This work may represent a key step towards scalable production of high-performance platinum-based nanowires for applications in catalysis and energy conversion.