Cargando…

Study of Cardiac Arrest Caused by Acute Pulmonary Thromboembolism and Thrombolytic Resuscitation in a Porcine Model

BACKGROUND: The success rate of resuscitation in cardiac arrest (CA) caused by pulmonary thromboembolism (PTE) is low. Furthermore, there are no large animal models that simulate clinical CA. The aim of this study was to establish a porcine CA model caused by PTE and to investigate the pathophysiolo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Lian-Xing, Li, Chun-Sheng, Yang, Jun, Tong, Nan, Xiao, Hong-Li, An, Le
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931264/
https://www.ncbi.nlm.nih.gov/pubmed/27364794
http://dx.doi.org/10.4103/0366-6999.184466
Descripción
Sumario:BACKGROUND: The success rate of resuscitation in cardiac arrest (CA) caused by pulmonary thromboembolism (PTE) is low. Furthermore, there are no large animal models that simulate clinical CA. The aim of this study was to establish a porcine CA model caused by PTE and to investigate the pathophysiology of CA and postresuscitation. METHODS: This model was induced in castrated male pigs (30 ± 2 kg; n = 21) by injecting thrombi (10–15 ml) via the left external jugular vein. Computed tomographic pulmonary angiography (CTPA) was performed at baseline, CA, and return of spontaneous circulation (ROSC). After CTPA during CA, cardiopulmonary resuscitation (CPR) with thrombolysis (recombinant tissue plasminogen activator 50 mg) was initiated. Hemodynamic, respiratory, and blood gas data were monitored. Cardiac troponins T, cardiac troponin I, creatine kinase-MB, myoglobin, and brain natriuretic peptide (BNP) were measured by enzyme-linked immunosorbent assay. Data were compared between baseline and CA with paired-sample t-test and compared among different time points for survival animals with repeated measures analysis of variance. RESULTS: Seventeen animals achieved CA after emboli injection, while four achieved CA after 5–8 ml more thrombi. Nine animals survived 6 h after CPR. CTPA showed obstruction of the pulmonary arteries. Mean aortic pressure data showed occurrence of CA caused by PTE (Z = −2.803, P = 0.002). The maximal rate of mean increase of left ventricular pressure (dp/dt(max)) was statistically decreased (t = 6.315, P = 0.000, variation coefficient = 0.25), and end-tidal carbon dioxide partial pressure (PetCO(2)) decreased to the lowest value (t = 27.240, P = 0.000). After ROSC (n = 9), heart rate (HR) and mean right ventricular pressure (MRVP) remained different versus baseline until 2 h after ROSC (HR, P = 0.036; MRVP, P = 0.027). Myoglobin was statistically increased from CA to 1 h after ROSC (P = 0.036, 0.026, 0.009, respectively), and BNP was increased from 2 h to 6 h after ROSC (P = 0.012, 0.014, 0.039, respectively). CONCLUSIONS: We established a porcine model of CA caused by PTE. The dp/dt(max) and PetCO(2) may be important for the occurrence of CA, while MRVP may be more important in postresuscitation.