Cargando…

Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of...

Descripción completa

Detalles Bibliográficos
Autores principales: Tzoumas, Stratis, Nunes, Antonio, Olefir, Ivan, Stangl, Stefan, Symvoulidis, Panagiotis, Glasl, Sarah, Bayer, Christine, Multhoff, Gabriele, Ntziachristos, Vasilis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931322/
https://www.ncbi.nlm.nih.gov/pubmed/27358000
http://dx.doi.org/10.1038/ncomms12121
_version_ 1782440871311966208
author Tzoumas, Stratis
Nunes, Antonio
Olefir, Ivan
Stangl, Stefan
Symvoulidis, Panagiotis
Glasl, Sarah
Bayer, Christine
Multhoff, Gabriele
Ntziachristos, Vasilis
author_facet Tzoumas, Stratis
Nunes, Antonio
Olefir, Ivan
Stangl, Stefan
Symvoulidis, Panagiotis
Glasl, Sarah
Bayer, Christine
Multhoff, Gabriele
Ntziachristos, Vasilis
author_sort Tzoumas, Stratis
collection PubMed
description Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO(2)) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO(2) within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO(2) in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO(2) accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.
format Online
Article
Text
id pubmed-4931322
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49313222016-07-12 Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues Tzoumas, Stratis Nunes, Antonio Olefir, Ivan Stangl, Stefan Symvoulidis, Panagiotis Glasl, Sarah Bayer, Christine Multhoff, Gabriele Ntziachristos, Vasilis Nat Commun Article Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO(2)) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO(2) within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO(2) in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO(2) accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology. Nature Publishing Group 2016-06-30 /pmc/articles/PMC4931322/ /pubmed/27358000 http://dx.doi.org/10.1038/ncomms12121 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Tzoumas, Stratis
Nunes, Antonio
Olefir, Ivan
Stangl, Stefan
Symvoulidis, Panagiotis
Glasl, Sarah
Bayer, Christine
Multhoff, Gabriele
Ntziachristos, Vasilis
Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues
title Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues
title_full Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues
title_fullStr Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues
title_full_unstemmed Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues
title_short Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues
title_sort eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931322/
https://www.ncbi.nlm.nih.gov/pubmed/27358000
http://dx.doi.org/10.1038/ncomms12121
work_keys_str_mv AT tzoumasstratis eigenspectraoptoacoustictomographyachievesquantitativebloodoxygenationimagingdeepintissues
AT nunesantonio eigenspectraoptoacoustictomographyachievesquantitativebloodoxygenationimagingdeepintissues
AT olefirivan eigenspectraoptoacoustictomographyachievesquantitativebloodoxygenationimagingdeepintissues
AT stanglstefan eigenspectraoptoacoustictomographyachievesquantitativebloodoxygenationimagingdeepintissues
AT symvoulidispanagiotis eigenspectraoptoacoustictomographyachievesquantitativebloodoxygenationimagingdeepintissues
AT glaslsarah eigenspectraoptoacoustictomographyachievesquantitativebloodoxygenationimagingdeepintissues
AT bayerchristine eigenspectraoptoacoustictomographyachievesquantitativebloodoxygenationimagingdeepintissues
AT multhoffgabriele eigenspectraoptoacoustictomographyachievesquantitativebloodoxygenationimagingdeepintissues
AT ntziachristosvasilis eigenspectraoptoacoustictomographyachievesquantitativebloodoxygenationimagingdeepintissues