Cargando…
Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection
Ionic gradients play a crucial role in the physiology of the human body, ranging from metabolism in cells to muscle contractions or brain activities. To monitor these ions, inexpensive, label-free chemical sensing devices are needed. Field-effect transistors (FETs) based on silicon (Si) nanowires or...
Autores principales: | Stoop, Ralph L., Wipf, Mathias, Müller, Steffen, Bedner, Kristine, Wright, Iain A., Martin, Colin J., Constable, Edwin C., Fanget, Axel, Schönenberger, Christian, Calame, Michel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931481/ https://www.ncbi.nlm.nih.gov/pubmed/27164151 http://dx.doi.org/10.3390/bios6020021 |
Ejemplares similares
-
Detection of Cu(2+) Ions with GGH Peptide Realized with Si-Nanoribbon ISFET
por: Synhaivska, Olena, et al.
Publicado: (2019) -
Determining
the Number of Graphene Nanoribbons in
Dual-Gate Field-Effect Transistors
por: Zhang, Jian, et al.
Publicado: (2023) -
Controlled
Quantum Dot Formation in Atomically Engineered
Graphene Nanoribbon Field-Effect Transistors
por: El Abbassi, Maria, et al.
Publicado: (2020) -
Printed n- and p-Channel
Transistors using
Silicon Nanoribbons Enduring Electrical, Thermal, and Mechanical Stress
por: Neto, João, et al.
Publicado: (2023) -
Graphene nanoribbon field-effect transistor at high bias
por: Ghadiry, Mahdiar, et al.
Publicado: (2014)