Cargando…
Loss of the Protein Tyrosine Phosphatase PTPN22 Reduces Mannan-Induced Autoimmune Arthritis in SKG Mice
The cytoplasmic phosphatase, protein tyrosine phosphatase nonreceptor type 22 (PTPN22), is a negative regulator of T cell signaling. Genome-wide association studies have shown that single-nucleotide polymorphisms in PTPN22 confer an increased risk of developing multiple autoimmune diseases in humans...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932175/ https://www.ncbi.nlm.nih.gov/pubmed/27288531 http://dx.doi.org/10.4049/jimmunol.1502656 |
_version_ | 1782441023782256640 |
---|---|
author | Sood, Shatakshi Brownlie, Rebecca J. Garcia, Celine Cowan, Graeme Salmond, Robert J. Sakaguchi, Shimon Zamoyska, Rose |
author_facet | Sood, Shatakshi Brownlie, Rebecca J. Garcia, Celine Cowan, Graeme Salmond, Robert J. Sakaguchi, Shimon Zamoyska, Rose |
author_sort | Sood, Shatakshi |
collection | PubMed |
description | The cytoplasmic phosphatase, protein tyrosine phosphatase nonreceptor type 22 (PTPN22), is a negative regulator of T cell signaling. Genome-wide association studies have shown that single-nucleotide polymorphisms in PTPN22 confer an increased risk of developing multiple autoimmune diseases in humans. The precise function of PTPN22 and how the variant protein contributes to autoimmunity is not well understood. To address this issue, we investigated the effect of PTPN22 deficiency on disease susceptibility in a mouse model of autoimmune arthritis. The SKG mouse expresses a hypomorphic mutant allele of ZAP70, which, upon exposure to fungal Ags, predisposes the mice to a CD4(+) T cell–mediated autoimmune arthritis that closely resembles rheumatoid arthritis in humans. Surprisingly, SKG Ptpn22(−/−) mice developed less severe mannan-induced arthritis compared with SKG mice. Diminution of disease was not due to significant alterations in thymocyte development or repertoire selection in SKG Ptpn22(−/−) mice, even though T cell–mediated signal transduction was improved. Instead, Ptpn22 deficiency appeared to bias CD4 Th cell differentiation away from the Th17 lineage, which is pathogenic in this setting, to a more Th1/T regulatory–focused response. These data show that even small perturbations in TCR signal transduction pathways can have profound consequences on the differentiation of T cell lineages and thus for the development of autoimmune diseases. |
format | Online Article Text |
id | pubmed-4932175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | AAI |
record_format | MEDLINE/PubMed |
spelling | pubmed-49321752016-07-08 Loss of the Protein Tyrosine Phosphatase PTPN22 Reduces Mannan-Induced Autoimmune Arthritis in SKG Mice Sood, Shatakshi Brownlie, Rebecca J. Garcia, Celine Cowan, Graeme Salmond, Robert J. Sakaguchi, Shimon Zamoyska, Rose J Immunol Autoimmunity The cytoplasmic phosphatase, protein tyrosine phosphatase nonreceptor type 22 (PTPN22), is a negative regulator of T cell signaling. Genome-wide association studies have shown that single-nucleotide polymorphisms in PTPN22 confer an increased risk of developing multiple autoimmune diseases in humans. The precise function of PTPN22 and how the variant protein contributes to autoimmunity is not well understood. To address this issue, we investigated the effect of PTPN22 deficiency on disease susceptibility in a mouse model of autoimmune arthritis. The SKG mouse expresses a hypomorphic mutant allele of ZAP70, which, upon exposure to fungal Ags, predisposes the mice to a CD4(+) T cell–mediated autoimmune arthritis that closely resembles rheumatoid arthritis in humans. Surprisingly, SKG Ptpn22(−/−) mice developed less severe mannan-induced arthritis compared with SKG mice. Diminution of disease was not due to significant alterations in thymocyte development or repertoire selection in SKG Ptpn22(−/−) mice, even though T cell–mediated signal transduction was improved. Instead, Ptpn22 deficiency appeared to bias CD4 Th cell differentiation away from the Th17 lineage, which is pathogenic in this setting, to a more Th1/T regulatory–focused response. These data show that even small perturbations in TCR signal transduction pathways can have profound consequences on the differentiation of T cell lineages and thus for the development of autoimmune diseases. AAI 2016-07-15 2016-06-10 /pmc/articles/PMC4932175/ /pubmed/27288531 http://dx.doi.org/10.4049/jimmunol.1502656 Text en Copyright © 2016 The Authors This is an open-access article distributed under the terms of the CC-BY 3.0 Unported license. |
spellingShingle | Autoimmunity Sood, Shatakshi Brownlie, Rebecca J. Garcia, Celine Cowan, Graeme Salmond, Robert J. Sakaguchi, Shimon Zamoyska, Rose Loss of the Protein Tyrosine Phosphatase PTPN22 Reduces Mannan-Induced Autoimmune Arthritis in SKG Mice |
title | Loss of the Protein Tyrosine Phosphatase PTPN22 Reduces Mannan-Induced Autoimmune Arthritis in SKG Mice |
title_full | Loss of the Protein Tyrosine Phosphatase PTPN22 Reduces Mannan-Induced Autoimmune Arthritis in SKG Mice |
title_fullStr | Loss of the Protein Tyrosine Phosphatase PTPN22 Reduces Mannan-Induced Autoimmune Arthritis in SKG Mice |
title_full_unstemmed | Loss of the Protein Tyrosine Phosphatase PTPN22 Reduces Mannan-Induced Autoimmune Arthritis in SKG Mice |
title_short | Loss of the Protein Tyrosine Phosphatase PTPN22 Reduces Mannan-Induced Autoimmune Arthritis in SKG Mice |
title_sort | loss of the protein tyrosine phosphatase ptpn22 reduces mannan-induced autoimmune arthritis in skg mice |
topic | Autoimmunity |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932175/ https://www.ncbi.nlm.nih.gov/pubmed/27288531 http://dx.doi.org/10.4049/jimmunol.1502656 |
work_keys_str_mv | AT soodshatakshi lossoftheproteintyrosinephosphataseptpn22reducesmannaninducedautoimmunearthritisinskgmice AT brownlierebeccaj lossoftheproteintyrosinephosphataseptpn22reducesmannaninducedautoimmunearthritisinskgmice AT garciaceline lossoftheproteintyrosinephosphataseptpn22reducesmannaninducedautoimmunearthritisinskgmice AT cowangraeme lossoftheproteintyrosinephosphataseptpn22reducesmannaninducedautoimmunearthritisinskgmice AT salmondrobertj lossoftheproteintyrosinephosphataseptpn22reducesmannaninducedautoimmunearthritisinskgmice AT sakaguchishimon lossoftheproteintyrosinephosphataseptpn22reducesmannaninducedautoimmunearthritisinskgmice AT zamoyskarose lossoftheproteintyrosinephosphataseptpn22reducesmannaninducedautoimmunearthritisinskgmice |