Cargando…

No attentional capture from invisible flicker

We tested whether fast flicker can capture attention using eight flicker frequencies from 20–96 Hz, including several too high to be perceived (>50 Hz). Using a 480 Hz visual display rate, we presented smoothly sampled sinusoidal temporal modulations at: 20, 30, 40, 48, 60, 69, 80, and 96 Hz. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Alais, David, Locke, Shannon M., Leung, Johahn, Van der Burg, Erik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932510/
https://www.ncbi.nlm.nih.gov/pubmed/27377759
http://dx.doi.org/10.1038/srep29296
Descripción
Sumario:We tested whether fast flicker can capture attention using eight flicker frequencies from 20–96 Hz, including several too high to be perceived (>50 Hz). Using a 480 Hz visual display rate, we presented smoothly sampled sinusoidal temporal modulations at: 20, 30, 40, 48, 60, 69, 80, and 96 Hz. We first established flicker detection rates for each frequency. Performance was at or near ceiling until 48 Hz and dropped sharply to chance level at 60 Hz and above. We then presented the same flickering stimuli as pre-cues in a visual search task containing five elements. Flicker location varied randomly and was therefore congruent with target location on 20% of trials. Comparing congruent and incongruent trials revealed a very strong congruency effect (faster search for cued targets) for all detectable frequencies (20–48 Hz) but no effect for faster flicker rates that were detected at chance. This pattern of results (obtained with brief flicker cues: 58 ms) was replicated for long flicker cues (1000 ms) intended to allow for entrainment to the flicker frequency. These results indicate that only visible flicker serves as an exogenous attentional cue and that flicker rates too high to be perceived are completely ineffective.