Cargando…

Mitotic genes are transcriptionally upregulated in the fibroblast irradiated with very low doses of UV-C

Ultraviolet (UV) radiation induces a variety of biological effects, including DNA damage response and cell signaling pathways. We performed transcriptome analysis using microarray in human primary cultured fibroblasts irradiated with UV-C (0.5 or 5 J/m(2)) and harvested at 4 or 12 h following UV exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Takeuchi, Seiji, Matsuda, Toshiro, Ono, Ryusuke, Tsujimoto, Mariko, Nishigori, Chikako
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932599/
https://www.ncbi.nlm.nih.gov/pubmed/27378355
http://dx.doi.org/10.1038/srep29233
Descripción
Sumario:Ultraviolet (UV) radiation induces a variety of biological effects, including DNA damage response and cell signaling pathways. We performed transcriptome analysis using microarray in human primary cultured fibroblasts irradiated with UV-C (0.5 or 5 J/m(2)) and harvested at 4 or 12 h following UV exposure. All transcript data were analyzed by comparison with the corresponding results in non-irradiated (control) cells. The number of genes with significantly altered expression (≥2-fold difference relative to the control) is higher in the sample irradiated with high dose of UV, suggesting that gene expression was UV dose-dependent. Pathway analysis on the upregulated genes at 12 h indicates that the expression of some cell cycle-related genes was predominantly induced irrespective of UV-dose. Interestingly, almost all the genes with significant altered expression were cell cycle-related genes designated as ‘Mitotic Genes’, which function in the spindle assembly checkpoint. Therefore, even a low dose of UV could affect the transcriptional profile.