Cargando…

HANDS2: accurate assignment of homoeallelic base-identity in allopolyploids despite missing data

Characterization of homoeallelic base-identity in allopolyploids is difficult since homeologous subgenomes are closely related and becomes further challenging if diploid-progenitor data is missing. We present HANDS2, a next-generation sequencing-based tool that enables highly accurate (>90%) geno...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Amina, Belfield, Eric J., Harberd, Nicholas P., Mithani, Aziz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932600/
https://www.ncbi.nlm.nih.gov/pubmed/27378447
http://dx.doi.org/10.1038/srep29234
Descripción
Sumario:Characterization of homoeallelic base-identity in allopolyploids is difficult since homeologous subgenomes are closely related and becomes further challenging if diploid-progenitor data is missing. We present HANDS2, a next-generation sequencing-based tool that enables highly accurate (>90%) genome-wide discovery of homeolog-specific base-identity in allopolyploids even in the absence of a diploid-progenitor. We applied HANDS2 to the transcriptomes of various cruciferous plants belonging to genus Brassica. Our results suggest that the three C genomes in Brassica are more similar to each other than the three A genomes, and provide important insights into the relationships between various Brassica tetraploids and their diploid-progenitors at a single-base resolution.