Cargando…
DEMARCATE: Density-based magnetic resonance image clustering for assessing tumor heterogeneity in cancer
Tumor heterogeneity is a crucial area of cancer research wherein inter- and intra-tumor differences are investigated to assess and monitor disease development and progression, especially in cancer. The proliferation of imaging and linked genomic data has enabled us to evaluate tumor heterogeneity on...
Autores principales: | Saha, Abhijoy, Banerjee, Sayantan, Kurtek, Sebastian, Narang, Shivali, Lee, Joonsang, Rao, Ganesh, Martinez, Juan, Bharath, Karthik, Rao, Arvind U.K., Baladandayuthapani, Veerabhadran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932621/ https://www.ncbi.nlm.nih.gov/pubmed/27408798 http://dx.doi.org/10.1016/j.nicl.2016.05.012 |
Ejemplares similares
-
Tree-based Methods for Characterizing Tumor Density Heterogeneity
por: Shoemaker, Katherine, et al.
Publicado: (2018) -
Spatial Habitat Features Derived from Multiparametric Magnetic Resonance Imaging Data Are Associated with Molecular Subtype and 12-Month Survival Status in Glioblastoma Multiforme
por: Lee, Joonsang, et al.
Publicado: (2015) -
Association of graph-based spatial features with overall survival status of glioblastoma patients
por: Lee, Joonsang, et al.
Publicado: (2023) -
Variograms for kriging and clustering of spatial functional data with phase variation
por: Guo, Xiaohan, et al.
Publicado: (2022) -
Spatial habitats from multiparametric MR imaging are associated with signaling pathway activities and survival in glioblastoma
por: Dextraze, Katherine, et al.
Publicado: (2017)