Cargando…

Profiling networks of distinct immune-cells in tumors

BACKGROUND: It is now clearly evident that cancer outcome and response to therapy is guided by diverse immune-cell activity in tumors. Presently, a key challenge is to comprehensively identify networks of distinct immune-cell signatures present in complex tissue, at higher-resolution and at various...

Descripción completa

Detalles Bibliográficos
Autores principales: Clancy, Trevor, Hovig, Eivind
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932723/
https://www.ncbi.nlm.nih.gov/pubmed/27377892
http://dx.doi.org/10.1186/s12859-016-1141-3
Descripción
Sumario:BACKGROUND: It is now clearly evident that cancer outcome and response to therapy is guided by diverse immune-cell activity in tumors. Presently, a key challenge is to comprehensively identify networks of distinct immune-cell signatures present in complex tissue, at higher-resolution and at various stages of differentiation, activation or function. This is particularly so for closely related immune-cells with diminutive, yet critical, differences. RESULTS: To predict networks of infiltrated distinct immune-cell phenotypes at higher resolution, we explored an integrated knowledge-based approach to select immune-cell signature genes integrating not only expression enrichment across immune-cells, but also an automatic capture of relevant immune-cell signature genes from the literature. This knowledge-based approach was integrated with resources of immune-cell specific protein networks, to define signature genes of distinct immune-cell phenotypes. We demonstrate the utility of this approach by profiling signatures of distinct immune-cells, and networks of immune-cells, from metastatic melanoma patients who had undergone chemotherapy. The resultant bioinformatics strategy complements immunohistochemistry from these tumors, and predicts both tumor-killing and immunosuppressive networks of distinct immune-cells in responders and non-responders, respectively. The approach is also shown to capture differences in the immune-cell networks of BRAF versus NRAS mutated metastatic melanomas, and the dynamic changes in resistance to targeted kinase inhibitors in MAPK signalling. CONCLUSIONS: This integrative bioinformatics approach demonstrates that capturing the protein network signatures and ratios of distinct immune-cell in the tumor microenvironment maybe an important factor in predicting response to therapy. This may serve as a computational strategy to define network signatures of distinct immune-cells to guide immuno-pathological discovery. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1141-3) contains supplementary material, which is available to authorized users.