Cargando…

Leaf lifespan is positively correlated with periods of leaf production and reproduction in 49 herb and shrub species

Leaf life span and plant phenology are central elements in strategies for plant carbon gain and nutrient conservation. Although few studies have found that leaf life span correlate with the patterns of leaf dynamics and reproductive output, but there have not been sufficient conclusive tests for rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan Li, Fang, Liu, Xin, Bao, Wei kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933094/
https://www.ncbi.nlm.nih.gov/pubmed/27398191
http://dx.doi.org/10.1002/ece3.2147
Descripción
Sumario:Leaf life span and plant phenology are central elements in strategies for plant carbon gain and nutrient conservation. Although few studies have found that leaf life span correlate with the patterns of leaf dynamics and reproductive output, but there have not been sufficient conclusive tests for relationships between leaf life span and plant phenological traits, the forms and strengths of such relationships are poorly understood. This study was conducted with 49 herb and shrub species collected from the eastern portion of the Tibetan Plateau and grown together in a common garden setting. We investigated leaf life span, the periods of leaf production and death, the time lag between leaf production and death, and the period of plant reproduction (i.e., flowering and fruiting). Interspecific relationships of leaf life span with leaf dynamics and reproduction period were determined. Leaf production period was far longer than leaf death period and largely reflected the interspecific variation of leaf life span. Moreover, leaf life span was positively correlated with the length of reproduction (i.e., flowering and fruiting) period. These relationships were generally consistent across different subgroups of species (herbs vs. shrubs) and indicate potentially widely applicable relationships between LLS and aboveground phenology. We concluded that leaf life span is associated not simply with the dynamics of the leaf itself but with reproduction period. The results demonstrate a plant trade‐off in resource allocation between production and reproduction and a coordinated arrangement of leaves, flowers, and fruits in their time investment. Our results provide insight into the relationship between leaf life span and plant phenology.