Cargando…
Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans
Some complex plant-derived polysaccharides, such as modified citrus pectins and galactomannans, have been shown to have promising anti-inflammatory and anti-cancer effects. Most reports propose or claim that these effects are due to interaction of the polysaccharides with galectins because the polys...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933242/ https://www.ncbi.nlm.nih.gov/pubmed/27129206 http://dx.doi.org/10.1074/jbc.M116.721464 |
_version_ | 1782441154199945216 |
---|---|
author | Stegmayr, John Lepur, Adriana Kahl-Knutson, Barbro Aguilar-Moncayo, Matilde Klyosov, Anatole A. Field, Robert A. Oredsson, Stina Nilsson, Ulf J. Leffler, Hakon |
author_facet | Stegmayr, John Lepur, Adriana Kahl-Knutson, Barbro Aguilar-Moncayo, Matilde Klyosov, Anatole A. Field, Robert A. Oredsson, Stina Nilsson, Ulf J. Leffler, Hakon |
author_sort | Stegmayr, John |
collection | PubMed |
description | Some complex plant-derived polysaccharides, such as modified citrus pectins and galactomannans, have been shown to have promising anti-inflammatory and anti-cancer effects. Most reports propose or claim that these effects are due to interaction of the polysaccharides with galectins because the polysaccharides contain galactose-containing side chains that might bind this class of lectin. However, their direct binding to and/or inhibition of the evolutionarily conserved galactoside-binding site of galectins has not been demonstrated. Using a well established fluorescence anisotropy assay, we tested the direct interaction of several such polysaccharides with physiological concentrations of a panel of galectins. The bioactive pectic samples tested were very poor inhibitors of the canonical galactoside-binding site for the tested galectins, with IC(50) values >10 mg/ml for a few or in most cases no inhibitory activity at all. The galactomannan Davanat® was more active, albeit not a strong inhibitor (IC(50) values ranging from 3 to 20 mg/ml depending on the galectin). Pure synthetic oligosaccharide fragments found in the side chains and backbone of pectins and galactomannans were additionally tested. The most commonly found galactan configuration in pectins had no inhibition of the galectins tested. Galactosylated tri- and pentamannosides, representing the structure of Davanat®, had an inhibitory effect of galectins comparable with that of free galactose. Further evaluation using cell-based assays, indirectly linked to galectin-3 inhibition, showed no inhibition of galectin-3 by the polysaccharides. These data suggest that the physiological effects of these plant polysaccharides are not due to inhibition of the canonical galectin carbohydrate-binding site. |
format | Online Article Text |
id | pubmed-4933242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-49332422016-07-08 Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans Stegmayr, John Lepur, Adriana Kahl-Knutson, Barbro Aguilar-Moncayo, Matilde Klyosov, Anatole A. Field, Robert A. Oredsson, Stina Nilsson, Ulf J. Leffler, Hakon J Biol Chem Glycobiology and Extracellular Matrices Some complex plant-derived polysaccharides, such as modified citrus pectins and galactomannans, have been shown to have promising anti-inflammatory and anti-cancer effects. Most reports propose or claim that these effects are due to interaction of the polysaccharides with galectins because the polysaccharides contain galactose-containing side chains that might bind this class of lectin. However, their direct binding to and/or inhibition of the evolutionarily conserved galactoside-binding site of galectins has not been demonstrated. Using a well established fluorescence anisotropy assay, we tested the direct interaction of several such polysaccharides with physiological concentrations of a panel of galectins. The bioactive pectic samples tested were very poor inhibitors of the canonical galactoside-binding site for the tested galectins, with IC(50) values >10 mg/ml for a few or in most cases no inhibitory activity at all. The galactomannan Davanat® was more active, albeit not a strong inhibitor (IC(50) values ranging from 3 to 20 mg/ml depending on the galectin). Pure synthetic oligosaccharide fragments found in the side chains and backbone of pectins and galactomannans were additionally tested. The most commonly found galactan configuration in pectins had no inhibition of the galectins tested. Galactosylated tri- and pentamannosides, representing the structure of Davanat®, had an inhibitory effect of galectins comparable with that of free galactose. Further evaluation using cell-based assays, indirectly linked to galectin-3 inhibition, showed no inhibition of galectin-3 by the polysaccharides. These data suggest that the physiological effects of these plant polysaccharides are not due to inhibition of the canonical galectin carbohydrate-binding site. American Society for Biochemistry and Molecular Biology 2016-06-17 2016-04-26 /pmc/articles/PMC4933242/ /pubmed/27129206 http://dx.doi.org/10.1074/jbc.M116.721464 Text en © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version free via Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) . |
spellingShingle | Glycobiology and Extracellular Matrices Stegmayr, John Lepur, Adriana Kahl-Knutson, Barbro Aguilar-Moncayo, Matilde Klyosov, Anatole A. Field, Robert A. Oredsson, Stina Nilsson, Ulf J. Leffler, Hakon Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans |
title | Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans |
title_full | Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans |
title_fullStr | Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans |
title_full_unstemmed | Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans |
title_short | Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans |
title_sort | low or no inhibitory potency of the canonical galectin carbohydrate-binding site by pectins and galactomannans |
topic | Glycobiology and Extracellular Matrices |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933242/ https://www.ncbi.nlm.nih.gov/pubmed/27129206 http://dx.doi.org/10.1074/jbc.M116.721464 |
work_keys_str_mv | AT stegmayrjohn lowornoinhibitorypotencyofthecanonicalgalectincarbohydratebindingsitebypectinsandgalactomannans AT lepuradriana lowornoinhibitorypotencyofthecanonicalgalectincarbohydratebindingsitebypectinsandgalactomannans AT kahlknutsonbarbro lowornoinhibitorypotencyofthecanonicalgalectincarbohydratebindingsitebypectinsandgalactomannans AT aguilarmoncayomatilde lowornoinhibitorypotencyofthecanonicalgalectincarbohydratebindingsitebypectinsandgalactomannans AT klyosovanatolea lowornoinhibitorypotencyofthecanonicalgalectincarbohydratebindingsitebypectinsandgalactomannans AT fieldroberta lowornoinhibitorypotencyofthecanonicalgalectincarbohydratebindingsitebypectinsandgalactomannans AT oredssonstina lowornoinhibitorypotencyofthecanonicalgalectincarbohydratebindingsitebypectinsandgalactomannans AT nilssonulfj lowornoinhibitorypotencyofthecanonicalgalectincarbohydratebindingsitebypectinsandgalactomannans AT lefflerhakon lowornoinhibitorypotencyofthecanonicalgalectincarbohydratebindingsitebypectinsandgalactomannans |