Cargando…

An Optimal Bahadur-Efficient Method in Detection of Sparse Signals with Applications to Pathway Analysis in Sequencing Association Studies

Next-generation sequencing data pose a severe curse of dimensionality, complicating traditional "single marker—single trait" analysis. We propose a two-stage combined p-value method for pathway analysis. The first stage is at the gene level, where we integrate effects within a gene using t...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Hongying, Wu, Guodong, Wu, Michael, Zhi, Degui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933358/
https://www.ncbi.nlm.nih.gov/pubmed/27380176
http://dx.doi.org/10.1371/journal.pone.0152667
Descripción
Sumario:Next-generation sequencing data pose a severe curse of dimensionality, complicating traditional "single marker—single trait" analysis. We propose a two-stage combined p-value method for pathway analysis. The first stage is at the gene level, where we integrate effects within a gene using the Sequence Kernel Association Test (SKAT). The second stage is at the pathway level, where we perform a correlated Lancaster procedure to detect joint effects from multiple genes within a pathway. We show that the Lancaster procedure is optimal in Bahadur efficiency among all combined p-value methods. The Bahadur efficiency,[Image: see text] , compares sample sizes among different statistical tests when signals become sparse in sequencing data, i.e. ε →0. The optimal Bahadur efficiency ensures that the Lancaster procedure asymptotically requires a minimal sample size to detect sparse signals ([Image: see text] ). The Lancaster procedure can also be applied to meta-analysis. Extensive empirical assessments of exome sequencing data show that the proposed method outperforms Gene Set Enrichment Analysis (GSEA). We applied the competitive Lancaster procedure to meta-analysis data generated by the Global Lipids Genetics Consortium to identify pathways significantly associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.