Cargando…
Nonlinear Network Reconstruction from Gene Expression Data Using Marginal Dependencies Measured by DCOL
Reconstruction of networks from high-throughput expression data is an important tool to identify new regulatory relations. Given that nonlinear and complex relations exist between biological units, methods that can utilize nonlinear dependencies may yield insights that are not provided by methods us...
Autores principales: | Liu, Haodong, Li, Peng, Zhu, Mengyao, Wang, Xiaofei, Lu, Jianwei, Yu, Tianwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933395/ https://www.ncbi.nlm.nih.gov/pubmed/27380516 http://dx.doi.org/10.1371/journal.pone.0158247 |
Ejemplares similares
-
K-Profiles: A Nonlinear Clustering Method for Pattern Detection in High Dimensional Data
por: Wang, Kai, et al.
Publicado: (2015) -
MeDiA: Mean Distance Association and Its Applications in Nonlinear Gene Set Analysis
por: Peng, Hesen, et al.
Publicado: (2015) -
Mutual information: Measuring nonlinear dependence in longitudinal epidemiological data
por: Young, Alexander L., et al.
Publicado: (2023) -
Nonlinear Data Mapping by Neural Networks
por: Duin, R P W
Publicado: (1996) -
A nonlinear correlation measure with applications to gene expression data
por: Tripathi, Yogesh M., et al.
Publicado: (2022)