Cargando…
Modelling survival: exposure pattern, species sensitivity and uncertainty
The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933929/ https://www.ncbi.nlm.nih.gov/pubmed/27381500 http://dx.doi.org/10.1038/srep29178 |
_version_ | 1782441251157573632 |
---|---|
author | Ashauer, Roman Albert, Carlo Augustine, Starrlight Cedergreen, Nina Charles, Sandrine Ducrot, Virginie Focks, Andreas Gabsi, Faten Gergs, André Goussen, Benoit Jager, Tjalling Kramer, Nynke I. Nyman, Anna-Maija Poulsen, Veronique Reichenberger, Stefan Schäfer, Ralf B. Van den Brink, Paul J. Veltman, Karin Vogel, Sören Zimmer, Elke I. Preuss, Thomas G. |
author_facet | Ashauer, Roman Albert, Carlo Augustine, Starrlight Cedergreen, Nina Charles, Sandrine Ducrot, Virginie Focks, Andreas Gabsi, Faten Gergs, André Goussen, Benoit Jager, Tjalling Kramer, Nynke I. Nyman, Anna-Maija Poulsen, Veronique Reichenberger, Stefan Schäfer, Ralf B. Van den Brink, Paul J. Veltman, Karin Vogel, Sören Zimmer, Elke I. Preuss, Thomas G. |
author_sort | Ashauer, Roman |
collection | PubMed |
description | The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans. |
format | Online Article Text |
id | pubmed-4933929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49339292016-07-08 Modelling survival: exposure pattern, species sensitivity and uncertainty Ashauer, Roman Albert, Carlo Augustine, Starrlight Cedergreen, Nina Charles, Sandrine Ducrot, Virginie Focks, Andreas Gabsi, Faten Gergs, André Goussen, Benoit Jager, Tjalling Kramer, Nynke I. Nyman, Anna-Maija Poulsen, Veronique Reichenberger, Stefan Schäfer, Ralf B. Van den Brink, Paul J. Veltman, Karin Vogel, Sören Zimmer, Elke I. Preuss, Thomas G. Sci Rep Article The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans. Nature Publishing Group 2016-07-06 /pmc/articles/PMC4933929/ /pubmed/27381500 http://dx.doi.org/10.1038/srep29178 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Ashauer, Roman Albert, Carlo Augustine, Starrlight Cedergreen, Nina Charles, Sandrine Ducrot, Virginie Focks, Andreas Gabsi, Faten Gergs, André Goussen, Benoit Jager, Tjalling Kramer, Nynke I. Nyman, Anna-Maija Poulsen, Veronique Reichenberger, Stefan Schäfer, Ralf B. Van den Brink, Paul J. Veltman, Karin Vogel, Sören Zimmer, Elke I. Preuss, Thomas G. Modelling survival: exposure pattern, species sensitivity and uncertainty |
title | Modelling survival: exposure pattern, species sensitivity and uncertainty |
title_full | Modelling survival: exposure pattern, species sensitivity and uncertainty |
title_fullStr | Modelling survival: exposure pattern, species sensitivity and uncertainty |
title_full_unstemmed | Modelling survival: exposure pattern, species sensitivity and uncertainty |
title_short | Modelling survival: exposure pattern, species sensitivity and uncertainty |
title_sort | modelling survival: exposure pattern, species sensitivity and uncertainty |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933929/ https://www.ncbi.nlm.nih.gov/pubmed/27381500 http://dx.doi.org/10.1038/srep29178 |
work_keys_str_mv | AT ashauerroman modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT albertcarlo modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT augustinestarrlight modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT cedergreennina modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT charlessandrine modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT ducrotvirginie modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT focksandreas modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT gabsifaten modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT gergsandre modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT goussenbenoit modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT jagertjalling modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT kramernynkei modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT nymanannamaija modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT poulsenveronique modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT reichenbergerstefan modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT schaferralfb modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT vandenbrinkpaulj modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT veltmankarin modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT vogelsoren modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT zimmerelkei modellingsurvivalexposurepatternspeciessensitivityanduncertainty AT preussthomasg modellingsurvivalexposurepatternspeciessensitivityanduncertainty |