Cargando…
An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies
Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be car...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934201/ https://www.ncbi.nlm.nih.gov/pubmed/27240371 http://dx.doi.org/10.3390/s16060775 |
_version_ | 1782441293672087552 |
---|---|
author | Zhou, Xijia Liu, Zhigang Xu, Shan Zhang, Weiwei Wu, Jun |
author_facet | Zhou, Xijia Liu, Zhigang Xu, Shan Zhang, Weiwei Wu, Jun |
author_sort | Zhou, Xijia |
collection | PubMed |
description | Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O(2)-A and O(2)-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR) can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD), Three FLD (3FLD) and the spectral fitting method (SFM), and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O(2)-A and O(2)-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1) the daily variation trend of SIF value of sweet potato leaves is basically same as that of photosynthetically active radiation (PAR); and (2) the bare land is a non-fluorescent emitter, the SIF of which is significantly smaller than that of sweet potato; and (3) analysis result based on the measured data is basically same as that based on simulated data. The above results verified the reliability of the SIF extracted from the measured data and the feasibility of comparatively observing the SIF value and the commonly used vegetation index of multiple vegetation canopy with this continuous observation system. This approach is beneficial for comprehensively analysing the stress response characteristics of vegetation canopies. |
format | Online Article Text |
id | pubmed-4934201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-49342012016-07-06 An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies Zhou, Xijia Liu, Zhigang Xu, Shan Zhang, Weiwei Wu, Jun Sensors (Basel) Article Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O(2)-A and O(2)-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR) can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD), Three FLD (3FLD) and the spectral fitting method (SFM), and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O(2)-A and O(2)-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1) the daily variation trend of SIF value of sweet potato leaves is basically same as that of photosynthetically active radiation (PAR); and (2) the bare land is a non-fluorescent emitter, the SIF of which is significantly smaller than that of sweet potato; and (3) analysis result based on the measured data is basically same as that based on simulated data. The above results verified the reliability of the SIF extracted from the measured data and the feasibility of comparatively observing the SIF value and the commonly used vegetation index of multiple vegetation canopy with this continuous observation system. This approach is beneficial for comprehensively analysing the stress response characteristics of vegetation canopies. MDPI 2016-05-27 /pmc/articles/PMC4934201/ /pubmed/27240371 http://dx.doi.org/10.3390/s16060775 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Xijia Liu, Zhigang Xu, Shan Zhang, Weiwei Wu, Jun An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies |
title | An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies |
title_full | An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies |
title_fullStr | An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies |
title_full_unstemmed | An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies |
title_short | An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies |
title_sort | automated comparative observation system for sun-induced chlorophyll fluorescence of vegetation canopies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934201/ https://www.ncbi.nlm.nih.gov/pubmed/27240371 http://dx.doi.org/10.3390/s16060775 |
work_keys_str_mv | AT zhouxijia anautomatedcomparativeobservationsystemforsuninducedchlorophyllfluorescenceofvegetationcanopies AT liuzhigang anautomatedcomparativeobservationsystemforsuninducedchlorophyllfluorescenceofvegetationcanopies AT xushan anautomatedcomparativeobservationsystemforsuninducedchlorophyllfluorescenceofvegetationcanopies AT zhangweiwei anautomatedcomparativeobservationsystemforsuninducedchlorophyllfluorescenceofvegetationcanopies AT wujun anautomatedcomparativeobservationsystemforsuninducedchlorophyllfluorescenceofvegetationcanopies AT zhouxijia automatedcomparativeobservationsystemforsuninducedchlorophyllfluorescenceofvegetationcanopies AT liuzhigang automatedcomparativeobservationsystemforsuninducedchlorophyllfluorescenceofvegetationcanopies AT xushan automatedcomparativeobservationsystemforsuninducedchlorophyllfluorescenceofvegetationcanopies AT zhangweiwei automatedcomparativeobservationsystemforsuninducedchlorophyllfluorescenceofvegetationcanopies AT wujun automatedcomparativeobservationsystemforsuninducedchlorophyllfluorescenceofvegetationcanopies |