Cargando…
Feature Selection Method Based on Neighborhood Relationships: Applications in EEG Signal Identification and Chinese Character Recognition
In this study, a new feature selection algorithm, the neighborhood-relationship feature selection (NRFS) algorithm, is proposed for identifying rat electroencephalogram signals and recognizing Chinese characters. In these two applications, dependent relationships exist among the feature vectors and...
Autores principales: | Zhao, Yu-Xiang, Chou, Chien-Hsing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934297/ https://www.ncbi.nlm.nih.gov/pubmed/27314346 http://dx.doi.org/10.3390/s16060871 |
Ejemplares similares
-
Feature selection of EEG signals in neuromarketing
por: Al-Nafjan, Abeer
Publicado: (2022) -
Multi-Level Attention Recognition of EEG Based on Feature Selection
por: Xu, Xin, et al.
Publicado: (2023) -
EEG Signal Feature Selection Algorithm and Support Vector Machine Model in Patient's Fatigue Recognition
por: Chitti, Sridevi, et al.
Publicado: (2021) -
Functional Gradient of the Fusiform Cortex for Chinese Character Recognition
por: Guo, Wanwan, et al.
Publicado: (2022) -
Emotion recognition based on EEG features in movie clips with channel selection
por: Özerdem, Mehmet Siraç, et al.
Publicado: (2017)