Cargando…
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented...
Autores principales: | Li, Chuan, Sánchez, René-Vinicio, Zurita, Grover, Cerrada, Mariela, Cabrera, Diego |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934321/ https://www.ncbi.nlm.nih.gov/pubmed/27322273 http://dx.doi.org/10.3390/s16060895 |
Ejemplares similares
-
Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal
por: Cerrada, Mariela, et al.
Publicado: (2015) -
Vibrations of rotating machinery
por: Matsushita, Osami, et al.
Publicado: (2017) -
A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
por: Zhou, Funa, et al.
Publicado: (2018) -
Conference on Vibrations in Rotating Machinery
por: Institution of Mechanical Engineers. London
Publicado: (1977) -
A Novel Method for Fault Diagnosis of Rotating Machinery
por: Tang, Meng, et al.
Publicado: (2022)