Cargando…

Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications

In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm(3) Ce-doped Gd–Al–Ga–garnet (Ce:GAGG) crystal that was coupled to a Si photom...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Hye Min, Joo, Koan Sik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934345/
https://www.ncbi.nlm.nih.gov/pubmed/27338392
http://dx.doi.org/10.3390/s16060919
Descripción
Sumario:In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm(3) Ce-doped Gd–Al–Ga–garnet (Ce:GAGG) crystal that was coupled to a Si photomultiplier (SiPM) to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for (133)Ba at 0.356 MeV, (22)Na at 0.511 MeV, (137)Cs at 0.662 MeV, and (60)Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery), and measured only 5.0 × 7.0 cm(2).