Cargando…

Isolation and Structural Characterization of an Oligosaccharide Produced by Bacillus subtilis in a Maltose-Containing Medium

Among 116 bacterial strains isolated from Korean fermented foods, one strain (SS-76) was selected for producing new oligosaccharides in a basal medium containing maltose as the sole source of carbon. Upon morphological characterization using scanning electron microscopy, the cells of strain SS-76 ap...

Descripción completa

Detalles Bibliográficos
Autor principal: Shin, Kwang-Soon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Food Science and Nutrition 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935239/
https://www.ncbi.nlm.nih.gov/pubmed/27390729
http://dx.doi.org/10.3746/pnf.2016.21.2.124
_version_ 1782441420556075008
author Shin, Kwang-Soon
author_facet Shin, Kwang-Soon
author_sort Shin, Kwang-Soon
collection PubMed
description Among 116 bacterial strains isolated from Korean fermented foods, one strain (SS-76) was selected for producing new oligosaccharides in a basal medium containing maltose as the sole source of carbon. Upon morphological characterization using scanning electron microscopy, the cells of strain SS-76 appeared rod-shaped; subsequent 16S rRNA gene sequence analysis revealed that strain SS-76 was phylogenetically close to Bacillus subtilis. The main oligosaccharide fraction B extracted from the culture supernatant of B. subtilis SS-76 was purified by high performance liquid chromatography. Subsequent structural analysis revealed that this oligosaccharide consisted only of glucose, and methylation analysis indicated similar proportions of glucopyranosides in the 6-linkage, 4-linkage, and non-reducing terminal positions. Matrix-assisted laser-induced/ionization time-of-flight/mass spectrometry and electrospray ionization-based liquid chromatography-mass spectrometry/mass spectrometry analyses suggested that this oligosaccharide consisted of a trisaccharide unit with 1,6- and 1,4-glycosidic linkages. The anomeric signals in the (1)H-nuclear magnetic resonance spectrum corresponded to α-anomeric configurations, and the trisaccharide was finally identified as panose (α-D-glucopyranosyl-1,6-α-D-glucopyranosyl-1,4-D-glucose). These results suggest that B. subtilis SS-76 converts maltose into panose; strain SS-76 may thus find industrial application in the production of panose.
format Online
Article
Text
id pubmed-4935239
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher The Korean Society of Food Science and Nutrition
record_format MEDLINE/PubMed
spelling pubmed-49352392016-07-07 Isolation and Structural Characterization of an Oligosaccharide Produced by Bacillus subtilis in a Maltose-Containing Medium Shin, Kwang-Soon Prev Nutr Food Sci Articles Among 116 bacterial strains isolated from Korean fermented foods, one strain (SS-76) was selected for producing new oligosaccharides in a basal medium containing maltose as the sole source of carbon. Upon morphological characterization using scanning electron microscopy, the cells of strain SS-76 appeared rod-shaped; subsequent 16S rRNA gene sequence analysis revealed that strain SS-76 was phylogenetically close to Bacillus subtilis. The main oligosaccharide fraction B extracted from the culture supernatant of B. subtilis SS-76 was purified by high performance liquid chromatography. Subsequent structural analysis revealed that this oligosaccharide consisted only of glucose, and methylation analysis indicated similar proportions of glucopyranosides in the 6-linkage, 4-linkage, and non-reducing terminal positions. Matrix-assisted laser-induced/ionization time-of-flight/mass spectrometry and electrospray ionization-based liquid chromatography-mass spectrometry/mass spectrometry analyses suggested that this oligosaccharide consisted of a trisaccharide unit with 1,6- and 1,4-glycosidic linkages. The anomeric signals in the (1)H-nuclear magnetic resonance spectrum corresponded to α-anomeric configurations, and the trisaccharide was finally identified as panose (α-D-glucopyranosyl-1,6-α-D-glucopyranosyl-1,4-D-glucose). These results suggest that B. subtilis SS-76 converts maltose into panose; strain SS-76 may thus find industrial application in the production of panose. The Korean Society of Food Science and Nutrition 2016-06 2016-06-30 /pmc/articles/PMC4935239/ /pubmed/27390729 http://dx.doi.org/10.3746/pnf.2016.21.2.124 Text en Copyright © 2016 by The Korean Society of Food Science and Nutrition This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Shin, Kwang-Soon
Isolation and Structural Characterization of an Oligosaccharide Produced by Bacillus subtilis in a Maltose-Containing Medium
title Isolation and Structural Characterization of an Oligosaccharide Produced by Bacillus subtilis in a Maltose-Containing Medium
title_full Isolation and Structural Characterization of an Oligosaccharide Produced by Bacillus subtilis in a Maltose-Containing Medium
title_fullStr Isolation and Structural Characterization of an Oligosaccharide Produced by Bacillus subtilis in a Maltose-Containing Medium
title_full_unstemmed Isolation and Structural Characterization of an Oligosaccharide Produced by Bacillus subtilis in a Maltose-Containing Medium
title_short Isolation and Structural Characterization of an Oligosaccharide Produced by Bacillus subtilis in a Maltose-Containing Medium
title_sort isolation and structural characterization of an oligosaccharide produced by bacillus subtilis in a maltose-containing medium
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935239/
https://www.ncbi.nlm.nih.gov/pubmed/27390729
http://dx.doi.org/10.3746/pnf.2016.21.2.124
work_keys_str_mv AT shinkwangsoon isolationandstructuralcharacterizationofanoligosaccharideproducedbybacillussubtilisinamaltosecontainingmedium