Cargando…
L-type calcium channels and MAP kinase contribute to thyrotropin-releasing hormone-induced depolarization in thalamic paraventricular nucleus neurons
In rat paraventricular thalamic nucleus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances neuronal excitability via concurrent decrease in a G protein-coupled inwardly rectifying K (GIRK)-like conductance and opening of a cannabinoid receptor-sensitive transient rec...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physiological Society
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935505/ https://www.ncbi.nlm.nih.gov/pubmed/27009047 http://dx.doi.org/10.1152/ajpregu.00082.2016 |
Sumario: | In rat paraventricular thalamic nucleus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances neuronal excitability via concurrent decrease in a G protein-coupled inwardly rectifying K (GIRK)-like conductance and opening of a cannabinoid receptor-sensitive transient receptor potential canonical (TRPC)-like conductance. Here, we investigated the calcium (Ca(2+)) contribution to the components of this TRH-induced response. TRH-induced membrane depolarization was reduced in the presence of intracellular BAPTA, also in media containing nominally zero [Ca(2+)](o), suggesting a critical role for both intracellular Ca(2+) release and Ca(2+) influx. TRH-induced inward current was unchanged by T-type Ca(2+) channel blockade, but was decreased by blockade of high-voltage-activated Ca(2+) channels (HVACCs). Both the pharmacologically isolated GIRK-like and the TRPC-like components of the TRH-induced response were decreased by nifedipine and increased by BayK8644, implying Ca(2+) influx via L-type Ca(2+) channels. Only the TRPC-like conductance was reduced by either thapsigargin or dantrolene, suggesting a role for ryanodine receptors and Ca(2+)-induced Ca(2+) release in this component of the TRH-induced response. In pituitary and other cell lines, TRH stimulates MAPK. In PVT neurons, only the GIRK-like component of the TRH-induced current was selectively decreased in the presence of PD98059, a MAPK inhibitor. Collectively, the data imply that TRH-induced depolarization and inward current in PVT neurons involve both a dependency on extracellular Ca(2+) influx via opening of L-type Ca(2+) channels, a sensitivity of a TRPC-like component to intracellular Ca(2+) release via ryanodine channels, and a modulation by MAPK of a GIRK-like conductance component. |
---|