Cargando…
Epigenetic perturbations in aging stem cells
Stem cells maintain homeostasis in all regenerating tissues during the lifespan of an organism. Thus, age-related functional decline of such tissues is likely to be at least partially explained by molecular events occurring in the stem cell compartment. Some of these events involve epigenetic change...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935734/ https://www.ncbi.nlm.nih.gov/pubmed/27229519 http://dx.doi.org/10.1007/s00335-016-9645-8 |
Sumario: | Stem cells maintain homeostasis in all regenerating tissues during the lifespan of an organism. Thus, age-related functional decline of such tissues is likely to be at least partially explained by molecular events occurring in the stem cell compartment. Some of these events involve epigenetic changes, which may dictate how an aging genome can lead to differential gene expression programs. Recent technological advances have made it now possible to assess the genome-wide distribution of an ever-increasing number of epigenetic marks. As a result, the hypothesis that there may be a causal role for an altered epigenome contributing to the functional decline of cells, tissues, and organs in aging organisms can now be explored. In this paper, we review recent developments in the field of epigenetic regulation of stem cells, and how this may contribute to aging. |
---|