Cargando…
A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis
Trans-lesion synthesis (TLS) is an important DNA-damage tolerance mechanism that permits ongoing DNA synthesis in cells harbouring damaged genomes. The E3 ubiquitin ligase RAD18 activates TLS by promoting recruitment of Y-family DNA polymerases to sites of DNA-damage-induced replication fork stallin...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935975/ https://www.ncbi.nlm.nih.gov/pubmed/27377895 http://dx.doi.org/10.1038/ncomms12105 |
_version_ | 1782441492899430400 |
---|---|
author | Gao, Yanzhe Mutter-Rottmayer, Elizabeth Greenwalt, Alicia M. Goldfarb, Dennis Yan, Feng Yang, Yang Martinez-Chacin, Raquel C. Pearce, Kenneth H. Tateishi, Satoshi Major, Michael B. Vaziri, Cyrus |
author_facet | Gao, Yanzhe Mutter-Rottmayer, Elizabeth Greenwalt, Alicia M. Goldfarb, Dennis Yan, Feng Yang, Yang Martinez-Chacin, Raquel C. Pearce, Kenneth H. Tateishi, Satoshi Major, Michael B. Vaziri, Cyrus |
author_sort | Gao, Yanzhe |
collection | PubMed |
description | Trans-lesion synthesis (TLS) is an important DNA-damage tolerance mechanism that permits ongoing DNA synthesis in cells harbouring damaged genomes. The E3 ubiquitin ligase RAD18 activates TLS by promoting recruitment of Y-family DNA polymerases to sites of DNA-damage-induced replication fork stalling. Here we identify the cancer/testes antigen melanoma antigen-A4 (MAGE-A4) as a tumour cell-specific RAD18-binding partner and an activator of TLS. MAGE-A4 depletion from MAGE-A4-expressing cancer cells destabilizes RAD18. Conversely, ectopic expression of MAGE-A4 (in cell lines lacking endogenous MAGE-A4) promotes RAD18 stability. DNA-damage-induced mono-ubiquitination of the RAD18 substrate PCNA is attenuated by MAGE-A4 silencing. MAGE-A4-depleted cells fail to resume DNA synthesis normally following ultraviolet irradiation and accumulate γH2AX, thereby recapitulating major hallmarks of TLS deficiency. Taken together, these results demonstrate a mechanism by which reprogramming of ubiquitin signalling in cancer cells can influence DNA damage tolerance and probably contribute to an altered genomic landscape. |
format | Online Article Text |
id | pubmed-4935975 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49359752016-07-14 A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis Gao, Yanzhe Mutter-Rottmayer, Elizabeth Greenwalt, Alicia M. Goldfarb, Dennis Yan, Feng Yang, Yang Martinez-Chacin, Raquel C. Pearce, Kenneth H. Tateishi, Satoshi Major, Michael B. Vaziri, Cyrus Nat Commun Article Trans-lesion synthesis (TLS) is an important DNA-damage tolerance mechanism that permits ongoing DNA synthesis in cells harbouring damaged genomes. The E3 ubiquitin ligase RAD18 activates TLS by promoting recruitment of Y-family DNA polymerases to sites of DNA-damage-induced replication fork stalling. Here we identify the cancer/testes antigen melanoma antigen-A4 (MAGE-A4) as a tumour cell-specific RAD18-binding partner and an activator of TLS. MAGE-A4 depletion from MAGE-A4-expressing cancer cells destabilizes RAD18. Conversely, ectopic expression of MAGE-A4 (in cell lines lacking endogenous MAGE-A4) promotes RAD18 stability. DNA-damage-induced mono-ubiquitination of the RAD18 substrate PCNA is attenuated by MAGE-A4 silencing. MAGE-A4-depleted cells fail to resume DNA synthesis normally following ultraviolet irradiation and accumulate γH2AX, thereby recapitulating major hallmarks of TLS deficiency. Taken together, these results demonstrate a mechanism by which reprogramming of ubiquitin signalling in cancer cells can influence DNA damage tolerance and probably contribute to an altered genomic landscape. Nature Publishing Group 2016-07-05 /pmc/articles/PMC4935975/ /pubmed/27377895 http://dx.doi.org/10.1038/ncomms12105 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Gao, Yanzhe Mutter-Rottmayer, Elizabeth Greenwalt, Alicia M. Goldfarb, Dennis Yan, Feng Yang, Yang Martinez-Chacin, Raquel C. Pearce, Kenneth H. Tateishi, Satoshi Major, Michael B. Vaziri, Cyrus A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis |
title | A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis |
title_full | A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis |
title_fullStr | A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis |
title_full_unstemmed | A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis |
title_short | A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis |
title_sort | neomorphic cancer cell-specific role of mage-a4 in trans-lesion synthesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935975/ https://www.ncbi.nlm.nih.gov/pubmed/27377895 http://dx.doi.org/10.1038/ncomms12105 |
work_keys_str_mv | AT gaoyanzhe aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT mutterrottmayerelizabeth aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT greenwaltaliciam aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT goldfarbdennis aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT yanfeng aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT yangyang aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT martinezchacinraquelc aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT pearcekennethh aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT tateishisatoshi aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT majormichaelb aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT vaziricyrus aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT gaoyanzhe neomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT mutterrottmayerelizabeth neomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT greenwaltaliciam neomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT goldfarbdennis neomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT yanfeng neomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT yangyang neomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT martinezchacinraquelc neomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT pearcekennethh neomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT tateishisatoshi neomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT majormichaelb neomorphiccancercellspecificroleofmagea4intranslesionsynthesis AT vaziricyrus neomorphiccancercellspecificroleofmagea4intranslesionsynthesis |