Cargando…

A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis

Trans-lesion synthesis (TLS) is an important DNA-damage tolerance mechanism that permits ongoing DNA synthesis in cells harbouring damaged genomes. The E3 ubiquitin ligase RAD18 activates TLS by promoting recruitment of Y-family DNA polymerases to sites of DNA-damage-induced replication fork stallin...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Yanzhe, Mutter-Rottmayer, Elizabeth, Greenwalt, Alicia M., Goldfarb, Dennis, Yan, Feng, Yang, Yang, Martinez-Chacin, Raquel C., Pearce, Kenneth H., Tateishi, Satoshi, Major, Michael B., Vaziri, Cyrus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935975/
https://www.ncbi.nlm.nih.gov/pubmed/27377895
http://dx.doi.org/10.1038/ncomms12105
_version_ 1782441492899430400
author Gao, Yanzhe
Mutter-Rottmayer, Elizabeth
Greenwalt, Alicia M.
Goldfarb, Dennis
Yan, Feng
Yang, Yang
Martinez-Chacin, Raquel C.
Pearce, Kenneth H.
Tateishi, Satoshi
Major, Michael B.
Vaziri, Cyrus
author_facet Gao, Yanzhe
Mutter-Rottmayer, Elizabeth
Greenwalt, Alicia M.
Goldfarb, Dennis
Yan, Feng
Yang, Yang
Martinez-Chacin, Raquel C.
Pearce, Kenneth H.
Tateishi, Satoshi
Major, Michael B.
Vaziri, Cyrus
author_sort Gao, Yanzhe
collection PubMed
description Trans-lesion synthesis (TLS) is an important DNA-damage tolerance mechanism that permits ongoing DNA synthesis in cells harbouring damaged genomes. The E3 ubiquitin ligase RAD18 activates TLS by promoting recruitment of Y-family DNA polymerases to sites of DNA-damage-induced replication fork stalling. Here we identify the cancer/testes antigen melanoma antigen-A4 (MAGE-A4) as a tumour cell-specific RAD18-binding partner and an activator of TLS. MAGE-A4 depletion from MAGE-A4-expressing cancer cells destabilizes RAD18. Conversely, ectopic expression of MAGE-A4 (in cell lines lacking endogenous MAGE-A4) promotes RAD18 stability. DNA-damage-induced mono-ubiquitination of the RAD18 substrate PCNA is attenuated by MAGE-A4 silencing. MAGE-A4-depleted cells fail to resume DNA synthesis normally following ultraviolet irradiation and accumulate γH2AX, thereby recapitulating major hallmarks of TLS deficiency. Taken together, these results demonstrate a mechanism by which reprogramming of ubiquitin signalling in cancer cells can influence DNA damage tolerance and probably contribute to an altered genomic landscape.
format Online
Article
Text
id pubmed-4935975
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49359752016-07-14 A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis Gao, Yanzhe Mutter-Rottmayer, Elizabeth Greenwalt, Alicia M. Goldfarb, Dennis Yan, Feng Yang, Yang Martinez-Chacin, Raquel C. Pearce, Kenneth H. Tateishi, Satoshi Major, Michael B. Vaziri, Cyrus Nat Commun Article Trans-lesion synthesis (TLS) is an important DNA-damage tolerance mechanism that permits ongoing DNA synthesis in cells harbouring damaged genomes. The E3 ubiquitin ligase RAD18 activates TLS by promoting recruitment of Y-family DNA polymerases to sites of DNA-damage-induced replication fork stalling. Here we identify the cancer/testes antigen melanoma antigen-A4 (MAGE-A4) as a tumour cell-specific RAD18-binding partner and an activator of TLS. MAGE-A4 depletion from MAGE-A4-expressing cancer cells destabilizes RAD18. Conversely, ectopic expression of MAGE-A4 (in cell lines lacking endogenous MAGE-A4) promotes RAD18 stability. DNA-damage-induced mono-ubiquitination of the RAD18 substrate PCNA is attenuated by MAGE-A4 silencing. MAGE-A4-depleted cells fail to resume DNA synthesis normally following ultraviolet irradiation and accumulate γH2AX, thereby recapitulating major hallmarks of TLS deficiency. Taken together, these results demonstrate a mechanism by which reprogramming of ubiquitin signalling in cancer cells can influence DNA damage tolerance and probably contribute to an altered genomic landscape. Nature Publishing Group 2016-07-05 /pmc/articles/PMC4935975/ /pubmed/27377895 http://dx.doi.org/10.1038/ncomms12105 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Gao, Yanzhe
Mutter-Rottmayer, Elizabeth
Greenwalt, Alicia M.
Goldfarb, Dennis
Yan, Feng
Yang, Yang
Martinez-Chacin, Raquel C.
Pearce, Kenneth H.
Tateishi, Satoshi
Major, Michael B.
Vaziri, Cyrus
A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis
title A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis
title_full A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis
title_fullStr A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis
title_full_unstemmed A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis
title_short A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis
title_sort neomorphic cancer cell-specific role of mage-a4 in trans-lesion synthesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935975/
https://www.ncbi.nlm.nih.gov/pubmed/27377895
http://dx.doi.org/10.1038/ncomms12105
work_keys_str_mv AT gaoyanzhe aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT mutterrottmayerelizabeth aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT greenwaltaliciam aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT goldfarbdennis aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT yanfeng aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT yangyang aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT martinezchacinraquelc aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT pearcekennethh aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT tateishisatoshi aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT majormichaelb aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT vaziricyrus aneomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT gaoyanzhe neomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT mutterrottmayerelizabeth neomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT greenwaltaliciam neomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT goldfarbdennis neomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT yanfeng neomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT yangyang neomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT martinezchacinraquelc neomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT pearcekennethh neomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT tateishisatoshi neomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT majormichaelb neomorphiccancercellspecificroleofmagea4intranslesionsynthesis
AT vaziricyrus neomorphiccancercellspecificroleofmagea4intranslesionsynthesis