Cargando…
Feed-forward neural network model for hunger and satiety related VAS score prediction
BACKGROUND: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. METHODS: A multilayer feed-forward neural network was...
Autores principales: | Krishnan, Shaji, Hendriks, Henk F. J., Hartvigsen, Merete L., de Graaf, Albert A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936290/ https://www.ncbi.nlm.nih.gov/pubmed/27387922 http://dx.doi.org/10.1186/s12976-016-0043-4 |
Ejemplares similares
-
Neural Control of Hunger, Appetite, and Satiety
por: Brobeck, John R.
Publicado: (1957) -
Hunger and Satiety Gauge Reward Sensitivity
por: Cassidy, Ryan Michael, et al.
Publicado: (2017) -
The gastrointestinal tract in hunger and satiety signalling
por: Tack, Jan, et al.
Publicado: (2021) -
Effect of Meal Volume on Hunger and Satiety in Obese Subjects: Volume of meal and satiety
por: Żurakowski, Aleksander, et al.
Publicado: (2006) -
Stomachs: does the size matter? Aspects of intestinal satiety, gastric satiety, hunger and gluttony
por: Santoro, Sergio
Publicado: (2012)