Cargando…
Perioperative evaluation of respiratory impedance using the forced oscillation technique: a prospective observational study
BACKGROUND: Intravascular fluid shifts, mechanical ventilation and inhalational anesthetic drugs may contribute to intraoperative lung injury. This prospective observational study measured the changes in respiratory impedance resulting from inhalational anesthesia and mechanical ventilation in adult...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936309/ https://www.ncbi.nlm.nih.gov/pubmed/27389091 http://dx.doi.org/10.1186/s12871-016-0197-y |
Sumario: | BACKGROUND: Intravascular fluid shifts, mechanical ventilation and inhalational anesthetic drugs may contribute to intraoperative lung injury. This prospective observational study measured the changes in respiratory impedance resulting from inhalational anesthesia and mechanical ventilation in adults undergoing transurethral resection of bladder tumors. The components of respiratory impedance (resistance and reactance) were measured using the forced oscillation technique (FOT). METHODS: Respiratory resistance at 5 Hz (R5) and 20 Hz (R20), respiratory reactance at 5 Hz (X5), resonant frequency (Fres) and area of low reactance (ALX) were measured before and immediately after surgery in 30 adults. In addition, preoperative vital capacity (VC), forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1.0) were evaluated using spirometry. All patients were intubated with an endotracheal tube and were mechanically ventilated, with anesthesia maintained with sevoflurane. Pre- and postoperative FOT measurements were compared using Wilcoxon paired rank tests, and the relationships between FOT measurements and preoperative spirometry findings were determined by Spearman’s rank correlation analysis. RESULTS: Twenty-six patients were included in the final analysis: postoperative FOT could not be performed in four because of postoperative restlessness or nausea. The mean duration of surgery was 47 min. All components of respiratory resistance deteriorated significantly over the course of surgery, with median increases in R5, R20, and R5–R20 of 1.67 cmH(2)O/L/s (p < 0.0001), 1.28 cmH(2)O/L/s (p < 0.0001) and 0.46 cmH(2)O/L/s (p = 0.0004), respectively. The components of respiratory reactance also deteriorated significantly, with X5 decreasing 1.7 cmH(2)O/L/s (p < 0.0001), Fres increasing 5.57 Hz (p < 0.0001) and ALX increasing 10.51 cmH(2)O/L/s (p < 0.0001). There were statistically significant and directly proportional relationships between pre- and postoperative X5 and %VC, %FEV1.0 and %FVC, with inverse relationships between pre- and postoperative Fres and ALX. CONCLUSIONS: All components measured by FOT deteriorated significantly after a relatively short period of general anesthesia and mechanical ventilation. All components of resistance increased. Of the reactance components, X5 decreased and Fres and ALX increased. Pre- and postoperative respiratory reactance correlated with parameters measured by spirometry. TRIAL REGISTRATION: JMA-IIA00136. |
---|