Cargando…

Functions of PARylation in DNA Damage Repair Pathways

Protein poly ADP-ribosylation (PARylation) is a widespread post-translational modification at DNA lesions, which is catalyzed by poly(ADP-ribose) polymerases (PARPs). This modification regulates a number of biological processes including chromatin reorganization, DNA damage response (DDR), transcrip...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Huiting, Yu, Xiaochun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936651/
https://www.ncbi.nlm.nih.gov/pubmed/27240471
http://dx.doi.org/10.1016/j.gpb.2016.05.001
Descripción
Sumario:Protein poly ADP-ribosylation (PARylation) is a widespread post-translational modification at DNA lesions, which is catalyzed by poly(ADP-ribose) polymerases (PARPs). This modification regulates a number of biological processes including chromatin reorganization, DNA damage response (DDR), transcriptional regulation, apoptosis, and mitosis. PARP1, functioning as a DNA damage sensor, can be activated by DNA lesions, forming PAR chains that serve as a docking platform for DNA repair factors with high biochemical complexity. Here, we highlight molecular insights into PARylation recognition, the expanding role of PARylation in DDR pathways, and the functional interaction between PARylation and ubiquitination, which will offer us a better understanding of the biological roles of this unique post-translational modification.