Cargando…
In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island
The regulation model of the Staphylococcus aureus pathogenicity island SaPIbov1 transfer was recently reported. The repressor protein Stl obstructs the expression of SaPI proteins Str and Xis, latter which is responsible for mobilization initiation. Upon Φ11 phage infection of S. aureus. phage dUTPa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936726/ https://www.ncbi.nlm.nih.gov/pubmed/27388898 http://dx.doi.org/10.1371/journal.pone.0158793 |
_version_ | 1782441603041853440 |
---|---|
author | Papp-Kádár, Veronika Szabó, Judit Eszter Nyíri, Kinga Vertessy, Beata G. |
author_facet | Papp-Kádár, Veronika Szabó, Judit Eszter Nyíri, Kinga Vertessy, Beata G. |
author_sort | Papp-Kádár, Veronika |
collection | PubMed |
description | The regulation model of the Staphylococcus aureus pathogenicity island SaPIbov1 transfer was recently reported. The repressor protein Stl obstructs the expression of SaPI proteins Str and Xis, latter which is responsible for mobilization initiation. Upon Φ11 phage infection of S. aureus. phage dUTPase activates the SaPI transfer via Stl-dUTPase complex formation. Our aim was to predict the binding sites for the Stl repressor within the S. aureus pathogenicity island DNA sequence. We found that Stl was capable to bind to three 23-mer oligonucleotides, two of those constituting sequence segments in the stl-str, while the other corresponding to sequence segment within the str-xis intergenic region. Within these oligonucleotides, mutational analysis revealed that the predicted binding site for the Stl protein exists as a palindromic segment in both intergenic locations. The palindromes are built as 6-mer repeat sequences involved in Stl binding. The 6-mer repeats are separated by a 5 oligonucleotides long, nonspecific sequence. Future examination of the interaction between Stl and its binding sites in vivo will provide a molecular explanation for the mechanisms of gene repression and gene activation exerted simultaneously by the Stl protein in regulating transfer of the SaPIbov1 pathogenicity island in S. aureus. |
format | Online Article Text |
id | pubmed-4936726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49367262016-07-22 In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island Papp-Kádár, Veronika Szabó, Judit Eszter Nyíri, Kinga Vertessy, Beata G. PLoS One Research Article The regulation model of the Staphylococcus aureus pathogenicity island SaPIbov1 transfer was recently reported. The repressor protein Stl obstructs the expression of SaPI proteins Str and Xis, latter which is responsible for mobilization initiation. Upon Φ11 phage infection of S. aureus. phage dUTPase activates the SaPI transfer via Stl-dUTPase complex formation. Our aim was to predict the binding sites for the Stl repressor within the S. aureus pathogenicity island DNA sequence. We found that Stl was capable to bind to three 23-mer oligonucleotides, two of those constituting sequence segments in the stl-str, while the other corresponding to sequence segment within the str-xis intergenic region. Within these oligonucleotides, mutational analysis revealed that the predicted binding site for the Stl protein exists as a palindromic segment in both intergenic locations. The palindromes are built as 6-mer repeat sequences involved in Stl binding. The 6-mer repeats are separated by a 5 oligonucleotides long, nonspecific sequence. Future examination of the interaction between Stl and its binding sites in vivo will provide a molecular explanation for the mechanisms of gene repression and gene activation exerted simultaneously by the Stl protein in regulating transfer of the SaPIbov1 pathogenicity island in S. aureus. Public Library of Science 2016-07-07 /pmc/articles/PMC4936726/ /pubmed/27388898 http://dx.doi.org/10.1371/journal.pone.0158793 Text en © 2016 Papp-Kádár et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Papp-Kádár, Veronika Szabó, Judit Eszter Nyíri, Kinga Vertessy, Beata G. In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island |
title | In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island |
title_full | In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island |
title_fullStr | In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island |
title_full_unstemmed | In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island |
title_short | In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island |
title_sort | in vitro analysis of predicted dna-binding sites for the stl repressor of the staphylococcus aureus sapibov1 pathogenicity island |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936726/ https://www.ncbi.nlm.nih.gov/pubmed/27388898 http://dx.doi.org/10.1371/journal.pone.0158793 |
work_keys_str_mv | AT pappkadarveronika invitroanalysisofpredicteddnabindingsitesforthestlrepressorofthestaphylococcusaureussapibov1pathogenicityisland AT szabojuditeszter invitroanalysisofpredicteddnabindingsitesforthestlrepressorofthestaphylococcusaureussapibov1pathogenicityisland AT nyirikinga invitroanalysisofpredicteddnabindingsitesforthestlrepressorofthestaphylococcusaureussapibov1pathogenicityisland AT vertessybeatag invitroanalysisofpredicteddnabindingsitesforthestlrepressorofthestaphylococcusaureussapibov1pathogenicityisland |