Cargando…
Predictors of Outcome in Traumatic Brain Injury: New Insight Using Receiver Operating Curve Indices and Bayesian Network Analysis
BACKGROUND: Traumatic brain injury remains a global health problem. Understanding the relative importance of outcome predictors helps optimize our treatment strategies by informing assessment protocols, clinical decisions and trial designs. In this study we establish importance ranking for outcome p...
Autores principales: | Zador, Zsolt, Sperrin, Matthew, King, Andrew T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936732/ https://www.ncbi.nlm.nih.gov/pubmed/27388421 http://dx.doi.org/10.1371/journal.pone.0158762 |
Ejemplares similares
-
Multivariable and Bayesian Network Analysis of Outcome Predictors in Acute Aneurysmal Subarachnoid Hemorrhage: Review of a Pure Surgical Series in the Post-International Subarachnoid Aneurysm Trial Era
por: Zador, Zsolt, et al.
Publicado: (2018) -
Analyzing receiver operating characteristic curves with SAS
por: Gönen, Mithat
Publicado: (2007) -
Statistics review 13: Receiver operating characteristic curves
por: Bewick, Viv, et al.
Publicado: (2004) -
Tract-Based Bayesian Multivariate Analysis of Mild Traumatic Brain Injury
por: Liu, Yongkang, et al.
Publicado: (2014) -
Receiver Operating Characteristic (ROC) Curve: Practical Review for Radiologists
por: Park, Seong Ho, et al.
Publicado: (2004)