Cargando…
New algorithms to compute the nearness symmetric solution of the matrix equation
In this paper we consider the nearness symmetric solution of the matrix equation AXB = C to a given matrix [Formula: see text] in the sense of the Frobenius norm. By discussing equivalent form of the considered problem, we derive some necessary and sufficient conditions for the matrix [Formula: see...
Autores principales: | Peng, Zhen-yun, Fang, Yang-zhi, Xiao, Xian-wei, Du, Dan-dan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937012/ https://www.ncbi.nlm.nih.gov/pubmed/27441130 http://dx.doi.org/10.1186/s40064-016-2416-x |
Ejemplares similares
-
Symmetrization and stabilization of solutions of nonlinear elliptic equations
por: Efendiev, Messoud
Publicado: (2018) -
Non-radially symmetric solutions to the Ginzburg-Landau equation
por: Ovchinnikov, Yu N, et al.
Publicado: (2000) -
An Iterative Algorithm for the Reflexive Solution of the General Coupled Matrix Equations
por: Zhou, Zhongli, et al.
Publicado: (2013) -
A New Solution to the Matrix Equation [Formula: see text]
por: Song, Caiqin
Publicado: (2014) -
Minimal surfaces in the hyperbolic space and radial-symmetric solutions of the Cosh-Laplace equation
por: Novokshenov, V Yu
Publicado: (1994)