Cargando…
ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information
Summary: The accurate reconstruction of gene regulatory networks from large scale molecular profile datasets represents one of the grand challenges of Systems Biology. The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) represents one of the most effective tools to accomplish...
Autores principales: | Lachmann, Alexander, Giorgi, Federico M., Lopez, Gonzalo, Califano, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937200/ https://www.ncbi.nlm.nih.gov/pubmed/27153652 http://dx.doi.org/10.1093/bioinformatics/btw216 |
Ejemplares similares
-
hARACNe: improving the accuracy of regulatory model reverse engineering via higher-order data processing inequality tests
por: Jang, In Sock, et al.
Publicado: (2013) -
SJARACNe: a scalable software tool for gene network reverse engineering from big data
por: Khatamian, Alireza, et al.
Publicado: (2019) -
TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
por: Zoppoli, Pietro, et al.
Publicado: (2010) -
Inferring Protein Modulation from Gene Expression Data Using Conditional Mutual Information
por: Giorgi, Federico M., et al.
Publicado: (2014) -
JAMI: fast computation of conditional mutual information for ceRNA network analysis
por: Hornakova, Andrea, et al.
Publicado: (2018)